This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367442 #10 Nov 18 2023 10:55:29 %S A367442 2,6,22,92,426,2146,11634,67472 %N A367442 Number of discrete uninorms defined on the finite chain L_n={0,1,...,n-1,n}. %C A367442 The number of discrete uninorms on the finite chain L_n={0,1,...,n-1,n}, i.e., the number of monotonic increasing binary functions U: L_n^2->L_n such that U is commutative (U(x,y)=U(y,x) for all x,y in L_n), associative (U(U(x,y),z)=U(x,U(y,z)) for all x,y,z in L_n) and has neutral element e in L_n (U(x,e)=x for all x in L_n). %H A367442 M. Couceiro, J. Devillet and J.L. Marichal. <a href="https://doi.org/10.1016/j.fss.2017.06.013">Characterizations of idempotent discrete uninorms</a>, Fuzzy Sets and Systems, Volume 334, 2018, 60-72. %H A367442 M. Mas, S. Massanet, D. Ruiz-Aguilera, and J. Torrens <a href="https://doi.org/10.3233/IFS-151728">A survey on the existing classes of uninorms</a>, Journal of Intelligent and Fuzzy Systems, Volume 29, 2015, 1021-1037. %H A367442 M. Munar, S. Massanet and D. Ruiz-Aguilera, <a href="https://doi.org/10.1016/j.ins.2022.10.121">On the cardinality of some families of discrete connectives</a>, Information Sciences, Volume 621, 2023, 708-728. %K A367442 nonn,hard,more %O A367442 1,1 %A A367442 _Marc Munar_, Nov 18 2023