A367456 Expansion of (1 - x)/(1 - x - 7*x^2).
1, 0, 7, 7, 56, 105, 497, 1232, 4711, 13335, 46312, 139657, 463841, 1441440, 4688327, 14778407, 47596696, 151045545, 484222417, 1541541232, 4931098151, 15721886775, 50239573832, 160292781257, 511969798081, 1634019266880, 5217807853447, 16655942721607, 53180597695736, 169772196746985
Offset: 0
Links
Programs
-
Mathematica
LinearRecurrence[{1,7},{1,0},30] (* James C. McMahon, Jan 16 2024 *)
Formula
a(n) = a(n-1) + 7*a(n-2), with a(0) = 1, a(1) = 0.
G.f.: (1 - x)/(1 - x - 7*x^2).
a(n) = 7*(-i*sqrt(7))^(n-2)*S(n-2, i/sqrt(7)), with i = sqrt(-1) and the S-Chebyshev polynomial (see A049310). S(-2, x) = -1 and S(-1, x) = 0. The Fibonacci polynomials are F(n, x) = (-i)^(n-1)*S(n-1, i*x).
Comments