cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367469 a(n) is the total number of movable letters in all members of the partitions of [n].

This page as a plain text file.
%I A367469 #7 Nov 22 2023 22:30:02
%S A367469 0,1,6,29,140,704,3732,20915,123832,773051,5076174,34973432,252212600,
%T A367469 1899483793,14908277490,121701247649,1031472019760,9061405440156,
%U A367469 82384690078948,774102548613907,7507335441107420,75055820357153647,772694054961218802,8182814265240466788
%N A367469 a(n) is the total number of movable letters in all members of the partitions of [n].
%H A367469 Toufik Mansour and Mark Shattuck, <a href="https://doi.org/10.1080/10236198.2020.1739275">Counting set partitions by the number of movable letters</a>, Journal of Difference Equations and Applications, 26:3, 384-403, (2020). <a href="https://www.researchgate.net/publication/374910923_Counting_set_partitions_by_the_number_of_movable_letters">On ResearchGate</a>. See Theorem 8.
%F A367469 a(n) = (2*n - 1)*B(n)/2 - B(n+1)/2 + B(n-1)/2, where B(n) = A000110(n).
%t A367469 a[n_]:=(2n-1)BellB[n]/2-BellB[n+1]/2+BellB[n-1]/2; Array[a,24]
%Y A367469 Cf. A000110.
%Y A367469 Row sums of A367468.
%K A367469 nonn
%O A367469 1,3
%A A367469 _Stefano Spezia_, Nov 19 2023