cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367476 Sum of the final digits of the distinct prime divisors of n.

This page as a plain text file.
%I A367476 #17 Jun 23 2024 02:12:28
%S A367476 0,2,3,2,5,5,7,2,3,7,1,5,3,9,8,2,7,5,9,7,10,3,3,5,5,5,3,9,9,10,1,2,4,
%T A367476 9,12,5,7,11,6,7,1,12,3,3,8,5,7,5,7,7,10,5,3,5,6,9,12,11,9,10,1,3,10,
%U A367476 2,8,6,7,9,6,14,1,5,3,9,8,11,8,8,9,7,3,3,3,12,12
%N A367476 Sum of the final digits of the distinct prime divisors of n.
%C A367476 Even if a prime divides n more than once, it is only counted once.
%C A367476 Inverse Möbius transform of (n mod 10) * c(n), where c(n) is the prime characteristic (A010051). - _Wesley Ivan Hurt_, Jun 23 2024
%F A367476 a(n) = Sum_{p|n, p prime} (p mod 10).
%F A367476 a(n) = Sum_{d|n} (d mod 10) * c(d), where c = A010051. - _Wesley Ivan Hurt_, Jun 23 2024
%e A367476 a(66) = 6; The distinct prime divisors of 66 are 2, 3, 11 and the sum of their final digits is 2 + 3 + 1 = 6.
%t A367476 a[n_]:=Total[Mod[Select[Divisors[n],PrimeQ],10]]; Array[a,85] (* _Stefano Spezia_, Nov 19 2023 *)
%o A367476 (Python)
%o A367476 from sympy import factorint
%o A367476 def a(n): return sum(p%10 for p in factorint(n))
%o A367476 print([a(n) for n in range(1, 86)]) # _Michael S. Branicky_, Nov 19 2023
%o A367476 (PARI) a(n) = my(f=factor(n)); sum(k=1, #f~, f[k,1] % 10); \\ _Michel Marcus_, Nov 21 2023
%Y A367476 Cf. A008472, A010051, A010879 (final digit of n), A367466.
%K A367476 nonn,base,easy
%O A367476 1,2
%A A367476 _Wesley Ivan Hurt_, Nov 19 2023