cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A367287 Numbers k such that k^6*2^k + 1 is a prime.

Original entry on oeis.org

1, 2, 4, 62, 80, 122, 136, 658, 1918, 2998, 3404, 4042, 5678, 8378, 10438, 23530, 24610, 29090, 41650, 120818
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 21 2023

Keywords

Comments

No further terms <= 100000. - Michael S. Branicky, Nov 22 2023

Crossrefs

Numbers k such that k^m*2^k + 1 is a prime: 0, 1, 2, 4, 8, 16, .. (m = 0), A005849 (m = 1), A058780 (m = 2), A357612 (m = 3), A366422 (m = 4), A367421 (m = 5), this sequence (m = 6).
Cf. A367478.

Programs

  • Magma
    [k: k in [1..1000] | IsPrime(k^6*2^k + 1)];

Extensions

a(16)-a(19) from Michael S. Branicky, Nov 21 2023
a(20) from Michael S. Branicky, Aug 30 2024

A367561 Numbers k such that k^7*2^k - 1 is a prime.

Original entry on oeis.org

6, 45, 55, 80, 135, 187, 205, 384, 405, 1291, 1364, 2301, 2486, 2844, 16892, 27308, 30152, 32535, 45324, 71522, 72865
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 22 2023

Keywords

Comments

No further terms <= 100000. - Michael S. Branicky, Aug 28 2024

Crossrefs

Numbers k such that k^m*2^k - 1 is a prime: A000043 (m = 0), A002234 (m = 1), A058781 (m = 2), A367037 (m = 3), A367102 (m = 4), A367464 (m = 5), A367478 (m = 6), this sequence (m = 7).
Cf. A367560.

Programs

  • Magma
    [k: k in [1..4000] | IsPrime(k^7*2^k-1)];
  • Mathematica
    Select[Range[3000], PrimeQ[#^7*2^# - 1] &] (* Amiram Eldar, Nov 23 2023 *)

Extensions

a(16)-a(21) from Michael S. Branicky, Nov 23 2023

A367572 Numbers k such that k^8*2^k - 1 is a prime.

Original entry on oeis.org

5, 7, 49, 165, 251, 345, 385, 945, 949, 1001, 1963, 2113, 2249, 3751, 4381, 4911, 5133, 10039, 29693, 34901, 73885, 99319, 104883, 113613
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 23 2023

Keywords

Crossrefs

Numbers k such that k^m*2^k - 1 is a prime: A000043 (m = 0), A002234 (m = 1), A058781 (m = 2), A367037 (m = 3), A367102 (m = 4), A367464 (m = 5), A367478 (m = 6), A367561 (m = 7), this sequence (m = 8).

Programs

  • Magma
    [k: k in [1..4000] | IsPrime(k^8*2^k-1)];
  • Mathematica
    Select[Range[5000], PrimeQ[#^8*2^# - 1] &] (* Amiram Eldar, Nov 23 2023 *)

Extensions

a(19)-a(20) from Michael S. Branicky, Nov 23 2023
a(21) from Michael S. Branicky, Nov 25 2023
a(22)-a(24) from Michael S. Branicky, Aug 29 2024
Showing 1-3 of 3 results.