cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367485 Expansion of e.g.f. 1/(3 - 2*exp(x))^(x/2).

This page as a plain text file.
%I A367485 #13 Dec 29 2024 15:36:46
%S A367485 1,0,2,9,72,735,9300,140511,2469600,49509711,1115030220,27871094823,
%T A367485 765622756800,22925878253031,743201185847484,25930679953675815,
%U A367485 968847417413563200,38593990513290611967,1632776110278839747532,73111823927074777887111
%N A367485 Expansion of e.g.f. 1/(3 - 2*exp(x))^(x/2).
%F A367485 a(0) = 1; a(n) = (1/2) * Sum_{k=1..n} A367489(k) * binomial(n-1,k-1) * a(n-k).
%t A367485 With[{nn=20},CoefficientList[Series[1/(3-2Exp[x])^(x/2),{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Dec 29 2024 *)
%o A367485 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, j*sum(k=1, j-1, 2^k*(k-1)!*stirling(j-1, k, 2))*binomial(i-1, j-1)*v[i-j+1])/2); v;
%Y A367485 Cf. A354412, A367487.
%Y A367485 Cf. A367486, A367489.
%K A367485 nonn
%O A367485 0,3
%A A367485 _Seiichi Manyama_, Nov 19 2023