This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367500 #19 Jan 28 2024 20:33:57 %S A367500 1,0,1,5,90,5332,1076904,713634480,1586714659885,12154215627095823, %T A367500 328282817968663707661,31834558934274542784372501, %U A367500 11234635799120735533158176241587,14576389568173850099660541344975456791,70075904848498231395100110985113641934719377 %N A367500 The number of digraphs on n unlabeled nodes with each indegree >=1 and each outdegree >=1. %C A367500 Digraphs counted here must be loopless, but not necessarily connected. %C A367500 The definition is not strictly saying that there is no (global) source or sink, because the graphs are counted without considering (strong or weak) connectivity. %C A367500 (The weakly connected digraphs of this type start 1,0,1,5,89,5327,...) %H A367500 Andrew Howroyd, <a href="/A367500/b367500.txt">Table of n, a(n) for n = 0..50</a> %H A367500 R. J. Mathar, <a href="/A367500/a367500.pdf">Illustrations</a> (2023), 335 pages %e A367500 From _Andrew Howroyd_, Jan 02 2024: (Start) %e A367500 Example of a digraph counted by this sequence but not by A361586: %e A367500 o <---> o ----> o ----> o <---> o %e A367500 In the above example, the 3rd vertex has both an in arc and an out arc, but is not part of any directed cycle. (End) %o A367500 (PARI) %o A367500 permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} %o A367500 K(q, t)={sum(j=1, #q, gcd(t, q[j]))} %o A367500 a(n) = {if(n==0, 1, sum(k=1, n, my(s=0, m=n-k); forpart(p=k, s += permcount(p) * prod(i=1, #p, 2^(K(p,p[i])-1)-1) * polcoef(exp(sum(t=1, m, (1-2^K(p, t))/t*x^t) + O(x*x^m)), m)); s/k!))} \\ _Andrew Howroyd_, Jan 02 2024 %Y A367500 Cf. A121933 (labeled version), A086193 (labeled digraphs), A002494 (undirected graphs), A361586 (all vertices in at least one directed cycle). %K A367500 nonn %O A367500 0,4 %A A367500 _R. J. Mathar_, Nov 20 2023 %E A367500 Terms a(6) and beyond from _Andrew Howroyd_, Jan 02 2024