A367504 a(1) = 2; for n > 1, a(n) = a(n-1) + 2*gpf(a(n-1)), where gpf(k) = A006530(k) = greatest prime dividing k.
2, 6, 12, 18, 24, 30, 40, 50, 60, 70, 84, 98, 112, 126, 140, 154, 176, 198, 220, 242, 264, 286, 312, 338, 364, 390, 416, 442, 476, 510, 544, 578, 612, 646, 684, 722, 760, 798, 836, 874, 920, 966, 1012, 1058, 1104, 1150, 1196, 1242, 1288, 1334, 1392, 1450, 1508, 1566, 1624, 1682, 1740, 1798
Offset: 1
Keywords
Examples
a(7) = 40 as a(6) = 30 = 2*3*5, thus A006530(30) = 5 and a(7) = a(6) + 2*5 = 30 + 2*5 = 40.
Crossrefs
Programs
-
Mathematica
NestList[#+2FactorInteger[#][[-1,1]]&,2,100] (* Paolo Xausa, Dec 31 2023 *)
Comments