This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367511 #29 Mar 02 2024 13:09:09 %S A367511 1,4,36,48,45360,50400 %N A367511 Highly composite numbers h(k) = A002182(k) such that h >= rad(h)^2, where rad() = A007947(). %C A367511 Alternatively, this sequence lists h(k) such that A301413(k) >= A002110(A108602(k)), where A301413 is the "variable part" v described on page 5 of 12 of the Siano paper. %C A367511 This sequence is likely finite and full. See Chapter III regarding the structure of "Highly Composite Numbers". %C A367511 Terms larger than 36 are in A366250; A366250 is in A364702, which is in turn a proper subset of A332785, itself contained in A126706. %C A367511 36 is in A365308, a proper subset of A303606, contained in A131605, in turn contained in A286708. %H A367511 Srinivasa Ramanujan, <a href="https://www.imsc.res.in/~rao/ramanujan/CamUnivCpapers/Cpaper15/page9.htm">Highly Composite Numbers</a>, Proc. London Math. Soc. (1916) Vol. 2, No. 14, 347-409. %H A367511 D. B. Siano and J. D. Siano, <a href="http://wwwhomes.uni-bielefeld.de/achim/julianmanuscript3.pdf">An Algorithm for Generating Highly Composite Numbers</a>, 1994. %e A367511 Let P(n) = A002110(n). %e A367511 a(1) = h(1) = 1 since 1 >= 1^2. %e A367511 a(2) = h(3) = 4 since 4 >= P(1)^2, 4 >= 2^2. %e A367511 a(3) = h(7) = 36 since 36 >= P(2)^2, 36 >= 6^2. %e A367511 a(4) = h(8) = 48 since 48 >= P(2)^2, 48 >= 6^2. %e A367511 a(5) = h(26) = 43560 since 43560 >= P(4)^2, where P(4) = 210, and 210^2 = 44100. %e A367511 a(6) = h(27) = 50400 since 50400 >= P(4)^2. %e A367511 Let V(i) = A301414(i) and let P(j) = A002110(j). %e A367511 Plot of highly composite h = V(i)*P(j) at (x,y) = (j,i), i = 1..16, j = 1..7, showing h in this sequence in parentheses, and h in A168263 marked with an asterisk (*): %e A367511 V(i)\P(j) 1 2 6 30 210 2310 30030 ... %e A367511 +--------------------------------------- %e A367511 1 |(1*) 2* 6* %e A367511 2 | (4*) 12* 60* %e A367511 4 | 24* 120* 840* %e A367511 6 | (36) 180* 1260* %e A367511 8 | (48) 240 1680* %e A367511 12 | 360 2520 27720* %e A367511 24 | 720 5040 55440 720720 %e A367511 36 | 7560 83160 1081080 %e A367511 48 | 10080 110880 1441440 %e A367511 72 | 15120 166320 2162160 %e A367511 96 | 20160 221760 2882880 %e A367511 120 | 25200 277200 3603600 %e A367511 144 | 332640 4324320 %e A367511 216 | (45360) 498960 6486480 %e A367511 240 | (50400) 554400 7207200 %e A367511 ... %t A367511 (* First load function f at A025487, then run the following: *) %t A367511 s = Union@ Flatten@ f[12]; %t A367511 t = Map[DivisorSigma[0, #] &, s]; %t A367511 h = Map[s[[FirstPosition[t, #][[1]]]] &, Union@ FoldList[Max, t]]; %t A367511 Reap[Do[If[# >= Product[Prime[j], {j, PrimeNu[#]}]^2, Sow[#]] &[ h[[i]] ], %t A367511 {i, Length[h]}] ][[-1, 1]] %Y A367511 Cf. A001221, A002110, A002182, A007947, A025487, A108602, A126706, A131605, A168263, A286708, A301413, A301414, A303606, A332785, A365308, A362702, A366250. %K A367511 nonn,more %O A367511 1,2 %A A367511 _Michael De Vlieger_, Feb 08 2024