cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367514 The exponentially odious part of n: the largest unitary divisor of n that is an exponentially odious number (A270428).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 1, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 3, 25, 26, 1, 28, 29, 30, 31, 1, 33, 34, 35, 36, 37, 38, 39, 5, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 2, 55, 7, 57, 58, 59, 60, 61, 62, 63, 1, 65, 66, 67, 68, 69, 70
Offset: 1

Views

Author

Amiram Eldar, Nov 21 2023

Keywords

Comments

First differs from A056192 at n = 32, and from A270418 and A367168 at n = 128.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(e*ThueMorse[e]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(hammingweight(f[i, 2])%2, f[i, 1]^f[i, 2], 1));}
    
  • Python
    from math import prod
    from sympy import factorint
    def A367514(n): return prod(p**e for p, e in factorint(n).items() if e.bit_count()&1) # Chai Wah Wu, Nov 23 2023

Formula

Multiplicative with a(p^e) = p^(e*A010060(e)) = p^A102392(e).
a(n) = n/A367513(n).
A001221(a(n)) = A293439(n).
A034444(a(n)) = A367515(n).
a(n) >= 1, with equality if and only if n is an exponentially evil number (A262675).
a(n) <= n, with equality if and only if n is an exponentially odious number (A270428).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} f(1/p) = 0.88585652437242918295..., and f(x) = (x+2)/(2*(x+1)) + (x/2) * Product_{k>=0} (1 - x^(2^k)).