cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367522 The number of ways of tiling the n X n grid up to the symmetries of the square by a tile that is fixed under both horizontal and vertical reflection, but not diagonal reflection.

Original entry on oeis.org

1, 4, 84, 8292, 4203520, 8590033024, 70368815480832, 2305843010824323072, 302231454912728264605696, 158456325028529097399561355264, 332306998946228986960926214931349504, 2787593149816327892693735671512138485071872, 93536104789177786765036453099565034406633831137280
Offset: 1

Views

Author

Peter Kagey, Nov 21 2023

Keywords

Comments

The a(2) = 4 tilings are
- - - - - | - |
- -, | -, - |, and | -.

Crossrefs

Programs

  • Mathematica
    a[n_] := If[EvenQ[n], 2^(#^2 - 3)*(2 + 3*2^#^2 + 8^#^2) &[n/2], 4^(#^2 - 2 # - 1)*(4^# + 4^#^2 + 8^#) &[(n + 1)/2]]; Array[a, 13] (* Michael De Vlieger, Jul 06 2024 *)

Formula

a(2m-1) = 4^(m^2 - 2m - 1)*(4^m + 4^m^2 + 8^m).
a(2m) = 2^(m^2 - 3)*(2 + 3*2^m^2 + 8^m^2).