cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A367531 The number of ways of tiling the n X n grid up to 90-degree rotation by a tile that is fixed under 180-degree rotation but not 90-degree rotation.

Original entry on oeis.org

1, 6, 136, 16456, 8390656, 17179934976, 140737496743936, 4611686019501162496, 604462909807864343166976, 316912650057057631849169289216, 664613997892457937028364282443595776, 5575186299632655785385110159782842147536896, 187072209578355573530071668259090783432992763150336
Offset: 1

Views

Author

Peter Kagey, Dec 11 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[{2^(2 m^2 - 4 m - 1)*(4^m + 4^m^2), 2^(m^2 - 2)*(2 + 2^m^2 + 8^m^2)}, {m, 1, 5}] // Flatten

Formula

a(2*n-1) = 2^(2n^2 - 4n - 1)*(4^n + 4^n^2).
a(2*n) = 2^(n^2 - 2)*(2 + 2^n^2 + 8^n^2).

A368145 Number of ways of tiling the n X n torus up to 90-degree rotations of the square by an asymmetric tile.

Original entry on oeis.org

1, 23, 7296, 67124336, 11258999068672, 32794211700912314368, 1616901275801313012113145856, 1329227995784915876578744357489750016, 18043230090504974298810923860695296894480941056, 4017345110647475688854905231100098373350012499289786810368
Offset: 1

Views

Author

Peter Kagey, Dec 16 2023

Keywords

Comments

M.C. Escher enumerated a(2) = 23 by hand in May 1942, being perhaps the first person to attempt this sort of counting problem. (See Doris Schattschneider's book in the references for more details.)

References

  • Doris Schattschneider, Visions of Symmetry, W.H. Freeman, 1990, pages 44-48.

Crossrefs

Programs

  • Mathematica
    A368145[n_] := 1/(4n^2)*(DivisorSum[n, Function[d, DivisorSum[n, Function[c, EulerPhi[c] EulerPhi[d] 4^(n^2/LCM[c, d])]]]] + n^2*If[OddQ[n], 0, 3/4*2^n^2 + 2^(n^2/2)])
Showing 1-2 of 2 results.