This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367542 #11 Nov 22 2023 11:16:17 %S A367542 3,1764,2905736652,66016970246853190656, %T A367542 64657853715047202043531429875379200, %U A367542 6627957368676918780503749855130249245999452089509478400 %N A367542 a(n) = Product_{i=1..n, j=1..n} (i^2 + i*j + j^2). %F A367542 a(n) ~ c * 3^(3*n*(n+1)/2) * n^(2*n^2 - 2/3) / exp(3*n^2 - Pi*n*(n+1) / (2*sqrt(3))), where c = 3^(5/12) * exp(Pi/(12*sqrt(3))) * Gamma(1/3) / (2^(4/3) * Pi^(4/3)) = 0.42478290981890921418850643030484274341562970375995548434917... %t A367542 Table[Product[Product[(i^2 + i*j + j^2), {i, 1, n}], {j, 1, n}], {n, 1, 10}] %o A367542 (Python) %o A367542 from math import prod, factorial %o A367542 def A367542(n): return (prod(i*(i+j)+j**2 for i in range(1,n) for j in range(i+1,n+1))*factorial(n))**2*3**n # _Chai Wah Wu_, Nov 22 2023 %Y A367542 Cf. A203012, A324403, A367543. %K A367542 nonn %O A367542 1,1 %A A367542 _Vaclav Kotesovec_, Nov 22 2023