cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367549 Decimal expansion of 1 - DawsonF(1/2).

Original entry on oeis.org

5, 7, 5, 5, 6, 3, 6, 1, 6, 4, 9, 7, 9, 7, 7, 7, 0, 4, 0, 6, 5, 9, 5, 7, 6, 4, 7, 5, 1, 0, 3, 3, 0, 4, 2, 8, 9, 0, 3, 5, 7, 0, 5, 2, 2, 6, 4, 0, 3, 0, 7, 9, 6, 1, 8, 4, 8, 6, 6, 0, 3, 0, 3, 3, 6, 6, 7, 5, 4, 8, 4, 5, 2, 4, 0, 4, 0, 8, 0, 5, 2, 3, 8, 3, 2, 2, 8, 7, 9, 8, 7, 1, 5, 2, 1, 3, 8, 7, 7, 7, 8, 5, 7, 4, 0, 3, 8, 3, 0, 2
Offset: 0

Views

Author

Peter Luschny, Nov 23 2023

Keywords

Examples

			0.57556361649797770406595764751033042890357052264030796184866030336675484524040...
		

Crossrefs

Programs

  • Maple
    1 - sqrt(Pi/4)*erfi(1/2)/exp(1/4): evalf(%, 109);
  • Mathematica
    N[1 - DawsonF[1/2], 110] // RealDigits // First

Formula

Equals 1 - sqrt(Pi/4) * erfi(1/2) / exp(1/4) = 1 - A019704 * A367563 / A092042.
Let C denote the constant. Then:
2*C - 1 = Sum_{n>=0} (-1)^n / Pochhammer(n, n).
2*(C - 1) = Sum_{n>=1} (-1)^n*Gamma(n) / Gamma(2*n).
Equals Integral_{x=0..oo} exp(-x)*cos(sqrt(x)) dx. - Kritsada Moomuang, Jun 06 2025