cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367555 Number of zeros (or ones) in each row of the iterates of the Christmas tree pattern map (A367508).

This page as a plain text file.
%I A367555 #21 Nov 29 2023 07:46:04
%S A367555 1,1,3,3,3,6,2,6,2,6,6,10,5,5,10,5,5,10,5,10,10,15,3,9,3,9,9,15,3,9,3,
%T A367555 9,9,15,3,9,9,15,9,15,15,21,7,7,14,7,7,14,7,14,14,21,7,7,14,7,7,14,7,
%U A367555 14,14,21,7,7,14,7,14,14,21,7,14,14,21,14,21,21,28
%N A367555 Number of zeros (or ones) in each row of the iterates of the Christmas tree pattern map (A367508).
%C A367555 See A367508 for the description of the Christmas tree patterns, references and links.
%H A367555 Paolo Xausa, <a href="/A367555/b367555.txt">Table of n, a(n) for n = 1..13494</a> (first 15 orders).
%e A367555 The following diagram shows the first 4 tree pattern orders, along with the corresponding number of zeros = number of ones.
%e A367555 .
%e A367555 Order 1:                        |
%e A367555               0  1              |   1
%e A367555                                 |
%e A367555 Order 2:                        |
%e A367555                10               |   1
%e A367555            00  01  11           |   3
%e A367555                                 |
%e A367555 Order 3:                        |
%e A367555             100  101            |   3
%e A367555             010  110            |   3
%e A367555        000  001  011  111       |   6
%e A367555                                 |
%e A367555 Order 4:                        |
%e A367555               1010              |   2
%e A367555         1000  1001  1011        |   6
%e A367555               1100              |   2
%e A367555         0100  0101  1101        |   6
%e A367555         0010  0110  1110        |   6
%e A367555   0000  0001  0011  0111  1111  |  10
%e A367555 .
%t A367555 With[{imax=9},Map[Total,NestList[Map[Delete[{If[Length[#]>1,Rest[#],Nothing],Join[{First[#]},#+1]},0]&],{{0,1}},imax-1],{2}]] (* Generates terms up to order 9 *)
%o A367555 (Python)
%o A367555 from itertools import islice
%o A367555 from functools import reduce
%o A367555 def uniq(r): return reduce(lambda u, e: u if e in u else u+[e], r, [])
%o A367555 def agen():  # generator of terms
%o A367555     R = [["0", "1"]]
%o A367555     while R:
%o A367555         r = R.pop(0)
%o A367555         yield sum(e.count("1") for e in r)
%o A367555         if len(r) > 1: R.append(uniq([r[k]+"0" for k in range(1, len(r))]))
%o A367555         R.append(uniq([r[0]+"0", r[0]+"1"] + [r[k]+"1" for k in range(1, len(r))]))
%o A367555 print(list(islice(agen(), 77))) # _Michael S. Branicky_, Nov 23 2023
%Y A367555 Cf. A367508, A367562.
%K A367555 nonn,base
%O A367555 1,3
%A A367555 _Paolo Xausa_, Nov 22 2023