cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367559 Square array T(n, k) = 2^k - n, read by ascending antidiagonals.

This page as a plain text file.
%I A367559 #31 Nov 28 2023 14:27:32
%S A367559 1,0,2,-1,1,4,-2,0,3,8,-3,-1,2,7,16,-4,-2,1,6,15,32,-5,-3,0,5,14,31,
%T A367559 64,-6,-4,-1,4,13,30,63,128,-7,-5,-2,3,12,29,62,127,256,-8,-6,-3,2,11,
%U A367559 28,61,126,255,512,-9,-7,-4,1,10,27,60,125,254,511,1024
%N A367559 Square array T(n, k) = 2^k - n, read by ascending antidiagonals.
%H A367559 Paolo Xausa, <a href="/A367559/b367559.txt">Table of n, a(n) for n = 0..11475</a> (antidiagonals 0..150, flattened).
%F A367559 G.f. of row n: 1/(1-2*x) - n/(1-x).
%F A367559 E.g.f. of row n: exp(2*x) - n*exp(x).
%F A367559 T(0, k) = 2^k = A000079(k).
%F A367559 T(1, k) = 2^k - 1 = A000225(k).
%F A367559 T(2, k) = 2^k - 2 = A000918(k).
%F A367559 T(3, k) = 2^k - 3 = A036563(k).
%F A367559 T(5, k) = 2^k - 5 = A168616(k).
%F A367559 T(9, k) = 2^k - 9 = A185346(k).
%F A367559 T(10, k) = 2^k - 10 = A246168(k).
%F A367559 T(n, k) = 3*T(n, k-1) - 2*T(n, k-2) for k > 1.
%F A367559 T(n+1, k) = T(n, k) + 1.
%F A367559 T(n, n) = 2^n - n = A000325(n).
%F A367559 Sum_{k = 0..n} T(n - k, k) = A084634(n).
%F A367559 a(n) = 2^A002262(n) - A025581(n).
%F A367559 G.f.: (1 - 2*x - y + 3*x*y)/((1 - x)^2*(1 - y)*(1 - 2*y)). - _Stefano Spezia_, Nov 27 2023
%e A367559 This sequence as square array T(n, k):
%e A367559   n\k  0    1    2    3    4    5    6    7    8    9    10.
%e A367559   ---------------------------------------------------------.
%e A367559   0 :  1    2    4    8   16   32   64  128  256  512  1024.
%e A367559   1 :  0    1    3    7   15   31   63  127  255  511  1023.
%e A367559   2 : -1    0    2    6   14   30   62  126  254  510  1022.
%e A367559   3 : -2   -1    1    5   13   29   61  125  253  509  1021.
%e A367559   4 : -3   -2    0    4   12   28   60  124  252  508  1020.
%e A367559   5 : -4   -3   -1    3   11   27   59  123  251  507  1019.
%e A367559   6 : -5   -4   -2    2   10   26   58  122  250  506  1018.
%e A367559   7 : -6   -5   -3    1    9   25   57  121  249  505  1017.
%e A367559   8 : -7   -6   -4    0    8   24   56  120  248  504  1016.
%e A367559   9 : -8   -7   -5   -1    7   23   55  119  247  503  1015.
%e A367559   10: -9   -8   -6   -2    6   22   54  118  246  502  1014.
%t A367559 Table[2^k-n+k,{n,0,10},{k,0,n}] (* _Paolo Xausa_, Nov 28 2023 *)
%o A367559 (PARI) T(n, k) = 2^k-n \\ _Thomas Scheuerle_, Nov 23 2023
%Y A367559 Cf. A000079, A000225, A000325, A000295.
%Y A367559 Cf. A000325, A000918, A084634, A036563.
%Y A367559 Cf. A168616, A185346, A246168.
%Y A367559 Cf. A002262, A025581.
%K A367559 easy,sign,tabl
%O A367559 0,3
%A A367559 _Paul Curtz_, Nov 22 2023