This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367564 #13 Oct 10 2024 08:18:24 %S A367564 1,1,1,3,2,1,7,9,3,1,17,28,18,4,1,41,85,70,30,5,1,99,246,255,140,45,6, %T A367564 1,239,693,861,595,245,63,7,1,577,1912,2772,2296,1190,392,84,8,1,1393, %U A367564 5193,8604,8316,5166,2142,588,108,9,1,3363,13930,25965,28680,20790,10332,3570,840,135,10,1 %N A367564 Triangular array read by rows: T(n, k) = binomial(n, k) * A001333(n - k). %F A367564 From _Werner Schulte_, Nov 26 2023: (Start) %F A367564 The row polynomials p(n, x) = Sum_{k=0..n} T(n, k) * x^k satisfy: %F A367564 a) p'(n, x) = n * p(n-1, x) where p' is the first derivative of p; %F A367564 b) p(0, x) = 1, p(1, x) = 1 + x and p(n, x) = (2+2*x) * p(n-1, x) + (1-2*x-x^2) * p(n-2, x) for n > 1. %F A367564 T(n, 0) = A001333(n) for n >= 0 and T(n, k) = T(n-1, k-1) * n / k for 0 < k <= n. %F A367564 G.f.: (1 - (1+x) * t) / (1 - (2+2*x) * t - (1-2*x-x^2) * t^2). (End) %e A367564 Triangle T(n, k) starts: %e A367564 [0] 1; %e A367564 [1] 1, 1; %e A367564 [2] 3, 2, 1; %e A367564 [3] 7, 9, 3, 1; %e A367564 [4] 17, 28, 18, 4, 1; %e A367564 [5] 41, 85, 70, 30, 5, 1; %e A367564 [6] 99, 246, 255, 140, 45, 6, 1; %e A367564 [7] 239, 693, 861, 595, 245, 63, 7, 1; %e A367564 [8] 577, 1912, 2772, 2296, 1190, 392, 84, 8, 1; %e A367564 [9] 1393, 5193, 8604, 8316, 5166, 2142, 588, 108, 9, 1; %p A367564 P := proc(n) option remember; ifelse(n <= 1, 1, 2*P(n - 1) + P(n - 2)) end: %p A367564 T := (n, k) -> P(n - k) * binomial(n, k): %p A367564 for n from 0 to 9 do seq(T(n, k), k = 0..n) od; %t A367564 P[n_] := P[n] = If[n <= 1, 1, 2 P[n - 1] + P[n - 2]]; %t A367564 T[n_, k_] := P[n - k] Binomial[n, k]; %t A367564 Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Oct 10 2024, after _Peter Luschny_ *) %Y A367564 Cf. A001333 (column 0), A006012 (row sums), A367211. %K A367564 nonn,tabl %O A367564 0,4 %A A367564 _Peter Luschny_, Nov 25 2023