This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367568 #5 Nov 23 2023 10:36:14 %S A367568 1,24,60480,22353408000,1409672968704000000, %T A367568 16539333509029163728896000000, %U A367568 38185078618454141182825889242546176000000,18043150250179542387558306410182977707728856678400000000,1796395750154420920494206475343190362781863323574704301041254400000000000 %N A367568 a(n) = Product_{k=0..n} (4*k)! / k!^4. %F A367568 a(n) = Product_{k=0..n} binomial(4*k,k) * binomial(3*k,k) * binomial(2*k,k). %F A367568 a(n) = A268505(n) / A000178(n)^4. %F A367568 a(n) = A268505(n) / A168488(n). %F A367568 a(n) = A007685(n) * A268196(n) * A262261(n). %F A367568 a(n) ~ A^(15/4) * sqrt(Gamma(1/4)) * 2^(4*n^2 + 7*n/2 - 7/6) * exp(3*n/2 - 5/16) / (n^(3*n/2 + 17/16) * Pi^(3*n/2 + 7/4)), where A is the Glaisher-Kinkelin constant A074962. %t A367568 Table[Product[(4*k)!/k!^4, {k, 0, n}], {n, 0, 10}] %t A367568 Table[Product[Binomial[4*k,k] * Binomial[3*k,k] * Binomial[2*k,k], {k, 0, n}], {n, 0, 10}] %Y A367568 Cf. A000178, A008977, A268505, A168488, A268196, A262261. %Y A367568 Cf. A007685, A367567, A367569, A367570, A367571. %K A367568 nonn %O A367568 0,2 %A A367568 _Vaclav Kotesovec_, Nov 23 2023