This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367573 #15 Jul 14 2025 18:01:30 %S A367573 12,24,60,112,264,364,612,760,1104,1740,1984,2812,3444,3784,4512,5724, %T A367573 7080,7564,9112,10224,10804,12640,13944,16020,19012,20604,21424,23112, %U A367573 23980,25764,32512,34584,37812,38920,44700,45904,49612,53464,56112,60204,64440 %N A367573 Long legs of the only primitive Pythagorean triple whose inradius is the n-th prime and whose short leg is an odd number. %C A367573 See Ejercicio 2.7. of García-Ortega. %H A367573 Miguel-Ángel Pérez García-Ortega, <a href="/A367573/a367573.pdf">Capítulo 2. Inradio, El Libro de las Ternas Pitagóricas</a>. %F A367573 a(n) = 2*p^2 + 2*p where p is prime(n). %e A367573 Triangles begin %e A367573 5, 12, 13; %e A367573 7, 24, 25; %e A367573 11, 60, 61; %e A367573 15, 112, 113; %e A367573 23, 264, 265; %e A367573 ... %e A367573 Row n = (a, b, c) = (2*p + 1, 2*p^2 + 2*p, 2*p^2 + 2*p + 1), where p is the n-th prime number. %e A367573 This sequence is the middle column. %Y A367573 Cf. A072055 (short leg). %K A367573 nonn,easy %O A367573 1,1 %A A367573 _Miguel-Ángel Pérez García-Ortega_, Nov 23 2023