This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367579 #16 Nov 27 2023 07:57:30 %S A367579 1,2,1,3,1,1,4,1,2,1,1,5,1,2,6,1,1,2,2,1,7,1,2,8,1,3,2,2,1,1,9,1,2,3, %T A367579 1,1,2,1,4,10,1,1,1,11,1,2,2,1,1,3,3,1,1,12,1,1,2,2,1,3,13,1,1,1,14,1, %U A367579 5,2,3,1,1,15,1,2,4,1,3,2,2,1,6,16,1,2 %N A367579 Irregular triangle read by rows where row n is the multiset multiplicity kernel (MMK) of the multiset of prime indices of n. %C A367579 Row n = 1 is empty. %C A367579 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A367579 We define the multiset multiplicity kernel MMK(m) of a multiset m by the following property, holding for all distinct multiplicities k >= 1. If S is the set of elements of multiplicity k in m, then min(S) has multiplicity |S| in MMK(m). For example, MMK({1,1,2,2,3,4,5}) = {1,1,3,3,3}, and MMK({1,2,3,4,5,5,5,5}) = {1,1,1,1,5}. %C A367579 Note: I chose the word 'kernel' because, as with A007947 and A304038, MMK(m) is constructed using the same underlying elements as m and has length equal to the number of distinct elements of m. However, it is not necessarily a submultiset of m. %F A367579 For all positive integers n and k, row n^k is the same as row n. %e A367579 The first 45 rows: %e A367579 1: {} 16: {1} 31: {11} %e A367579 2: {1} 17: {7} 32: {1} %e A367579 3: {2} 18: {1,2} 33: {2,2} %e A367579 4: {1} 19: {8} 34: {1,1} %e A367579 5: {3} 20: {1,3} 35: {3,3} %e A367579 6: {1,1} 21: {2,2} 36: {1,1} %e A367579 7: {4} 22: {1,1} 37: {12} %e A367579 8: {1} 23: {9} 38: {1,1} %e A367579 9: {2} 24: {1,2} 39: {2,2} %e A367579 10: {1,1} 25: {3} 40: {1,3} %e A367579 11: {5} 26: {1,1} 41: {13} %e A367579 12: {1,2} 27: {2} 42: {1,1,1} %e A367579 13: {6} 28: {1,4} 43: {14} %e A367579 14: {1,1} 29: {10} 44: {1,5} %e A367579 15: {2,2} 30: {1,1,1} 45: {2,3} %t A367579 mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q,Count[q,#]==i&], {i,mts}]]]; %t A367579 Table[mmk[PrimePi/@Join@@ConstantArray@@@If[n==1, {},FactorInteger[n]]], {n,100}] %Y A367579 Indices of empty and singleton rows are A000961. %Y A367579 Row lengths are A001221. %Y A367579 Depends only on rootless base A052410, see A007916. %Y A367579 Row minima are A055396. %Y A367579 Rows have A071625 distinct elements. %Y A367579 Indices of constant rows are A072774. %Y A367579 Indices of strict rows are A130091. %Y A367579 Rows have Heinz numbers A367580. %Y A367579 Row sums are A367581. %Y A367579 Row maxima are A367583, opposite A367587. %Y A367579 Index of first row with Heinz number n is A367584. %Y A367579 Sorted row indices of first appearances are A367585. %Y A367579 Indices of rows of the form {1,1,...} are A367586. %Y A367579 Agrees with sorted prime signature at A367683, counted by A367682. %Y A367579 A submultiset of prime indices at A367685, counted by A367684. %Y A367579 A007947 gives squarefree kernel. %Y A367579 A112798 lists prime indices, length A001222, sum A056239, reverse A296150. %Y A367579 A124010 lists prime multiplicities (prime signature), sorted A118914. %Y A367579 A181819 gives prime shadow, with an inverse A181821. %Y A367579 A238747 gives prime metasignature, reversed A353742. %Y A367579 A304038 lists distinct prime indices, length A001221, sum A066328. %Y A367579 A367582 counts partitions by sum of multiset multiplicity kernel. %Y A367579 Cf. A000720, A001597, A005117, A027746, A027748, A051904, A052409, A061395, A062770, A175781, A288636, A289023. %K A367579 nonn,tabf %O A367579 1,2 %A A367579 _Gus Wiseman_, Nov 25 2023