cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367580 Multiset multiplicity kernel (MMK) of n. Product of (least prime factor with exponent k)^(number of prime factors with exponent k) over all distinct exponents k appearing in the prime factorization of n.

This page as a plain text file.
%I A367580 #15 Dec 04 2023 08:32:56
%S A367580 1,2,3,2,5,4,7,2,3,4,11,6,13,4,9,2,17,6,19,10,9,4,23,6,5,4,3,14,29,8,
%T A367580 31,2,9,4,25,4,37,4,9,10,41,8,43,22,15,4,47,6,7,10,9,26,53,6,25,14,9,
%U A367580 4,59,18,61,4,21,2,25,8,67,34,9,8,71,6,73,4,15,38
%N A367580 Multiset multiplicity kernel (MMK) of n. Product of (least prime factor with exponent k)^(number of prime factors with exponent k) over all distinct exponents k appearing in the prime factorization of n.
%C A367580 As an operation on multisets, this is represented by A367579.
%F A367580 a(n^k) = a(n) for all positive integers n and k.
%F A367580 A001221(a(n)) = A071625(n).
%F A367580 A001222(a(n)) = A001221(n).
%F A367580 If n is squarefree, a(n) = A020639(n)^A001222(n).
%F A367580 A056239(a(n)) = A367581(n).
%e A367580 90 has prime factorization 2^1 * 3^2 * 5^1, so for k = 1 we have 2^2, and for k = 2 we have 3^1, so a(90) = 12.
%t A367580 mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q,Count[q,#]==i&], {i,mts}]]];
%t A367580 Table[Times@@mmk[Join@@ConstantArray@@@FactorInteger[n]], {n,100}]
%Y A367580 Positions of 2's are A000079 without 1.
%Y A367580 Positions of 3's are A000244 without 1.
%Y A367580 Positions of primes (including 1) are A000961.
%Y A367580 Positions of prime(k) are prime powers prime(k)^i, rows of A051128.
%Y A367580 Depends only on rootless base A052410, see A007916.
%Y A367580 Positions of prime powers are A072774.
%Y A367580 Positions of squarefree numbers are A130091.
%Y A367580 Agrees with A181819 at positions A367683, counted by A367682.
%Y A367580 Rows of A367579 have this rank, sum A367581, max A367583, min A055396.
%Y A367580 Positions of first appearances are A367584, sorted A367585.
%Y A367580 Positions of powers of 2 are A367586.
%Y A367580 Divides n at positions A367685, counted by A367684.
%Y A367580 The opposite version (cokernel) is A367859.
%Y A367580 A007947 gives squarefree kernel.
%Y A367580 A027746 lists prime factors, length A001222, indices A112798.
%Y A367580 A027748 lists distinct prime factors, length A001221, indices A304038.
%Y A367580 A071625 counts distinct prime exponents.
%Y A367580 A124010 gives multiset of multiplicities (prime signature), sorted A118914.
%Y A367580 Cf. A001597, A005117, A020639, A051904, A052409, A062770, A175781, A238747, A288636, A353742, A367582.
%K A367580 nonn
%O A367580 1,2
%A A367580 _Gus Wiseman_, Nov 26 2023