A367581 Sum of the multiset multiplicity kernel (in which each multiplicity becomes the least element of that multiplicity) of the prime indices of n.
0, 1, 2, 1, 3, 2, 4, 1, 2, 2, 5, 3, 6, 2, 4, 1, 7, 3, 8, 4, 4, 2, 9, 3, 3, 2, 2, 5, 10, 3, 11, 1, 4, 2, 6, 2, 12, 2, 4, 4, 13, 3, 14, 6, 5, 2, 15, 3, 4, 4, 4, 7, 16, 3, 6, 5, 4, 2, 17, 5, 18, 2, 6, 1, 6, 3, 19, 8, 4, 3, 20, 3, 21, 2, 5, 9, 8, 3, 22, 4, 2, 2
Offset: 1
Keywords
Examples
The multiset multiplicity kernel of {1,2,2,3} is {1,1,2}, so a(90) = 4.
Crossrefs
Programs
-
Mathematica
mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q,Count[q,#]==i&], {i,mts}]]]; Table[Total[mmk[PrimePi/@Join@@ConstantArray@@@FactorInteger[n]]], {n,100}]
Comments