A367582 Triangle read by rows where T(n,k) is the number of integer partitions of n whose multiset multiplicity kernel (in which each multiplicity becomes the least element of that multiplicity), sums to k.
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 1, 2, 2, 1, 0, 1, 3, 3, 2, 1, 1, 0, 1, 1, 4, 3, 3, 2, 1, 0, 1, 3, 5, 4, 4, 3, 1, 1, 0, 1, 2, 6, 4, 8, 3, 3, 2, 1, 0, 1, 3, 7, 9, 6, 7, 4, 3, 1, 1, 0, 1, 1, 8, 7, 11, 9, 9, 4, 3, 2, 1
Offset: 0
Examples
Triangle begins: 1 0 1 0 1 1 0 1 1 1 0 1 2 1 1 0 1 1 2 2 1 0 1 3 3 2 1 1 0 1 1 4 3 3 2 1 0 1 3 5 4 4 3 1 1 0 1 2 6 4 8 3 3 2 1 0 1 3 7 9 6 7 4 3 1 1 0 1 1 8 7 11 9 9 4 3 2 1 0 1 5 10 11 13 10 11 6 5 3 1 1 0 1 1 10 11 17 14 18 10 9 4 3 2 1 0 1 3 12 17 19 18 22 14 12 8 4 3 1 1 0 1 3 12 15 27 19 31 19 19 10 9 5 3 2 1 0 1 4 15 23 27 31 33 24 26 18 12 8 4 3 1 1 0 1 1 14 20 35 33 48 32 37 25 20 11 10 4 3 2 1 Row n = 7 counts the following partitions: (1111111) (61) (421) (52) (4111) (511) (7) (2221) (331) (322) (43) (22111) (31111) (3211) (211111)
Crossrefs
Programs
-
Mathematica
mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q, Count[q,#]==i&], {i,mts}]]]; Table[Length[Select[IntegerPartitions[n], Total[mmk[#]]==k&]], {n,0,10}, {k,0,n}]
Comments