This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367584 #11 Apr 28 2024 16:21:27 %S A367584 1,2,3,6,5,12,7,30,15,20,11,90,13,28,45,210,17,60,19,150,63,44,23,630, %T A367584 35,52,105,252,29,360,31,2310,99,68,175,2100,37,76,117,1050,41,504,43, %U A367584 396,525,92,47,6930,77,140,153,468,53,420,275,1470,171,116,59 %N A367584 Least number whose multiset multiplicity kernel (in which each prime exponent becomes the least prime factor with that exponent) is n. First position of n in A367580. %C A367584 We define the multiset multiplicity kernel (MMK) of a positive integer n to be the product of (least prime factor with exponent k)^(number of prime factors with exponent k) over all distinct exponents k appearing in the prime factorization of n. For example, 90 has prime factorization 2^1 * 3^2 * 5^1, so for k = 1 we have 2^2, and for k = 2 we have 3^1, so MMK(90) = 12. As an operation on multisets, MMK is represented by the triangle A367579, and as an operation on their ranks it is represented by A367580. %F A367584 a(p) = p for all primes p. %e A367584 The least number with multiset multiplicity kernel 9 is 15, so a(9) = 15. %e A367584 The terms together with their prime indices begin: %e A367584 1 -> 1: {} %e A367584 2 -> 2: {1} %e A367584 3 -> 3: {2} %e A367584 4 -> 6: {1,2} %e A367584 5 -> 5: {3} %e A367584 6 -> 12: {1,1,2} %e A367584 7 -> 7: {4} %e A367584 8 -> 30: {1,2,3} %e A367584 9 -> 15: {2,3} %e A367584 10 -> 20: {1,1,3} %e A367584 11 -> 11: {5} %e A367584 12 -> 90: {1,2,2,3} %e A367584 13 -> 13: {6} %e A367584 14 -> 28: {1,1,4} %e A367584 15 -> 45: {2,2,3} %e A367584 16 ->210: {1,2,3,4} %t A367584 nn=1000; %t A367584 mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q,Count[q,#]==i&], {i,mts}]]]; %t A367584 spnm[y_]:=Max@@NestWhile[Most, Sort[y], Union[#]!=Range[Max@@#]&]; %t A367584 qq=Table[Times@@mmk[Join@@ConstantArray@@@FactorInteger[n]], {n,nn}]; %t A367584 Table[Position[qq,i][[1,1]], {i,spnm[qq]}] %Y A367584 Positions of primes are A000040. %Y A367584 Positions of squarefree numbers are A000961. %Y A367584 All terms are rootless A007916. %Y A367584 Contains no nonprime prime powers A246547. %Y A367584 The MMK triangle is A367579, sum A367581, min A055396, max A367583. %Y A367584 Positions of first appearances in A367580. %Y A367584 The sorted version is A367585. %Y A367584 The complement is A367768. %Y A367584 A007947 gives squarefree kernel. %Y A367584 A027746 lists prime factors, length A001222, indices A112798. %Y A367584 A027748 lists distinct prime factors, length A001221, indices A304038. %Y A367584 A071625 counts distinct prime exponents. %Y A367584 A124010 gives prime signature, sorted A118914. %Y A367584 Cf. A005117, A020639, A051904, A072774, A130091, A367586. %K A367584 nonn %O A367584 1,2 %A A367584 _Gus Wiseman_, Nov 29 2023