cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367584 Least number whose multiset multiplicity kernel (in which each prime exponent becomes the least prime factor with that exponent) is n. First position of n in A367580.

This page as a plain text file.
%I A367584 #11 Apr 28 2024 16:21:27
%S A367584 1,2,3,6,5,12,7,30,15,20,11,90,13,28,45,210,17,60,19,150,63,44,23,630,
%T A367584 35,52,105,252,29,360,31,2310,99,68,175,2100,37,76,117,1050,41,504,43,
%U A367584 396,525,92,47,6930,77,140,153,468,53,420,275,1470,171,116,59
%N A367584 Least number whose multiset multiplicity kernel (in which each prime exponent becomes the least prime factor with that exponent) is n. First position of n in A367580.
%C A367584 We define the multiset multiplicity kernel (MMK) of a positive integer n to be the product of (least prime factor with exponent k)^(number of prime factors with exponent k) over all distinct exponents k appearing in the prime factorization of n. For example, 90 has prime factorization 2^1 * 3^2 * 5^1, so for k = 1 we have 2^2, and for k = 2 we have 3^1, so MMK(90) = 12. As an operation on multisets, MMK is represented by the triangle A367579, and as an operation on their ranks it is represented by A367580.
%F A367584 a(p) = p for all primes p.
%e A367584 The least number with multiset multiplicity kernel 9 is 15, so a(9) = 15.
%e A367584 The terms together with their prime indices begin:
%e A367584    1 ->  1: {}
%e A367584    2 ->  2: {1}
%e A367584    3 ->  3: {2}
%e A367584    4 ->  6: {1,2}
%e A367584    5 ->  5: {3}
%e A367584    6 -> 12: {1,1,2}
%e A367584    7 ->  7: {4}
%e A367584    8 -> 30: {1,2,3}
%e A367584    9 -> 15: {2,3}
%e A367584   10 -> 20: {1,1,3}
%e A367584   11 -> 11: {5}
%e A367584   12 -> 90: {1,2,2,3}
%e A367584   13 -> 13: {6}
%e A367584   14 -> 28: {1,1,4}
%e A367584   15 -> 45: {2,2,3}
%e A367584   16 ->210: {1,2,3,4}
%t A367584 nn=1000;
%t A367584 mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q,Count[q,#]==i&], {i,mts}]]];
%t A367584 spnm[y_]:=Max@@NestWhile[Most, Sort[y], Union[#]!=Range[Max@@#]&];
%t A367584 qq=Table[Times@@mmk[Join@@ConstantArray@@@FactorInteger[n]], {n,nn}];
%t A367584 Table[Position[qq,i][[1,1]], {i,spnm[qq]}]
%Y A367584 Positions of primes are A000040.
%Y A367584 Positions of squarefree numbers are A000961.
%Y A367584 All terms are rootless A007916.
%Y A367584 Contains no nonprime prime powers A246547.
%Y A367584 The MMK triangle is A367579, sum A367581, min A055396, max A367583.
%Y A367584 Positions of first appearances in A367580.
%Y A367584 The sorted version is A367585.
%Y A367584 The complement is A367768.
%Y A367584 A007947 gives squarefree kernel.
%Y A367584 A027746 lists prime factors, length A001222, indices A112798.
%Y A367584 A027748 lists distinct prime factors, length A001221, indices A304038.
%Y A367584 A071625 counts distinct prime exponents.
%Y A367584 A124010 gives prime signature, sorted A118914.
%Y A367584 Cf. A005117, A020639, A051904, A072774, A130091, A367586.
%K A367584 nonn
%O A367584 1,2
%A A367584 _Gus Wiseman_, Nov 29 2023