This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367585 #8 Apr 28 2024 16:18:15 %S A367585 1,2,3,5,6,7,11,12,13,15,17,19,20,23,28,29,30,31,35,37,41,43,44,45,47, %T A367585 52,53,59,60,61,63,67,68,71,73,76,77,79,83,89,90,92,97,99,101,103,105, %U A367585 107,109,113,116,117,124,127,131,137,139,140,143,148,149,150 %N A367585 Numbers k whose multiset multiplicity kernel (in which each prime exponent becomes the least prime factor with that exponent) is different from that of all positive integers less than k. %C A367585 We define the multiset multiplicity kernel (MMK) of a positive integer n to be the product of (least prime factor with exponent k)^(number of prime factors with exponent k) over all distinct exponents k appearing in the prime factorization of n. For example, 90 has prime factorization 2^1 * 3^2 * 5^1, so for k = 1 we have 2^2, and for k = 2 we have 3^1, so MMK(90) = 12. As an operation on multisets, MMK is represented by A367579, and as an operation on their ranks it is represented by A367580. %e A367585 The terms together with their prime indices begin: %e A367585 1: {} 28: {1,1,4} 60: {1,1,2,3} %e A367585 2: {1} 29: {10} 61: {18} %e A367585 3: {2} 30: {1,2,3} 63: {2,2,4} %e A367585 5: {3} 31: {11} 67: {19} %e A367585 6: {1,2} 35: {3,4} 68: {1,1,7} %e A367585 7: {4} 37: {12} 71: {20} %e A367585 11: {5} 41: {13} 73: {21} %e A367585 12: {1,1,2} 43: {14} 76: {1,1,8} %e A367585 13: {6} 44: {1,1,5} 77: {4,5} %e A367585 15: {2,3} 45: {2,2,3} 79: {22} %e A367585 17: {7} 47: {15} 83: {23} %e A367585 19: {8} 52: {1,1,6} 89: {24} %e A367585 20: {1,1,3} 53: {16} 90: {1,2,2,3} %e A367585 23: {9} 59: {17} 92: {1,1,9} %t A367585 nn=100; %t A367585 mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q,Count[q,#]==i&], {i,mts}]]]; %t A367585 qq=Table[Times@@mmk[Join@@ConstantArray@@@FactorInteger[n]], {n,nn}]; %t A367585 Select[Range[nn], FreeQ[Take[qq,#-1], qq[[#]]]&] %Y A367585 Contains all primes A000040 but no other perfect powers A001597. %Y A367585 All terms are rootless A007916 (have no positive integer roots). %Y A367585 Positions of squarefree terms appear to be A073485. %Y A367585 Contains no nonprime prime powers A246547. %Y A367585 The MMK triangle is A367579, sum A367581, min A055396, max A367583. %Y A367585 Sorted positions of first appearances in A367580. %Y A367585 Sorted version of A367584. %Y A367585 Complement of A367768. %Y A367585 A007947 gives squarefree kernel. %Y A367585 A027746 lists prime factors, length A001222, indices A112798. %Y A367585 A027748 lists distinct prime factors, length A001221, indices A304038. %Y A367585 A071625 counts distinct prime exponents. %Y A367585 A124010 gives prime signature, sorted A118914. %Y A367585 Cf. A020639, A051904, A072774, A130091, A181819, A238747, A367582, A367685. %K A367585 nonn %O A367585 1,2 %A A367585 _Gus Wiseman_, Nov 29 2023