cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367585 Numbers k whose multiset multiplicity kernel (in which each prime exponent becomes the least prime factor with that exponent) is different from that of all positive integers less than k.

This page as a plain text file.
%I A367585 #8 Apr 28 2024 16:18:15
%S A367585 1,2,3,5,6,7,11,12,13,15,17,19,20,23,28,29,30,31,35,37,41,43,44,45,47,
%T A367585 52,53,59,60,61,63,67,68,71,73,76,77,79,83,89,90,92,97,99,101,103,105,
%U A367585 107,109,113,116,117,124,127,131,137,139,140,143,148,149,150
%N A367585 Numbers k whose multiset multiplicity kernel (in which each prime exponent becomes the least prime factor with that exponent) is different from that of all positive integers less than k.
%C A367585 We define the multiset multiplicity kernel (MMK) of a positive integer n to be the product of (least prime factor with exponent k)^(number of prime factors with exponent k) over all distinct exponents k appearing in the prime factorization of n. For example, 90 has prime factorization 2^1 * 3^2 * 5^1, so for k = 1 we have 2^2, and for k = 2 we have 3^1, so MMK(90) = 12. As an operation on multisets, MMK is represented by A367579, and as an operation on their ranks it is represented by A367580.
%e A367585 The terms together with their prime indices begin:
%e A367585      1: {}         28: {1,1,4}    60: {1,1,2,3}
%e A367585      2: {1}        29: {10}       61: {18}
%e A367585      3: {2}        30: {1,2,3}    63: {2,2,4}
%e A367585      5: {3}        31: {11}       67: {19}
%e A367585      6: {1,2}      35: {3,4}      68: {1,1,7}
%e A367585      7: {4}        37: {12}       71: {20}
%e A367585     11: {5}        41: {13}       73: {21}
%e A367585     12: {1,1,2}    43: {14}       76: {1,1,8}
%e A367585     13: {6}        44: {1,1,5}    77: {4,5}
%e A367585     15: {2,3}      45: {2,2,3}    79: {22}
%e A367585     17: {7}        47: {15}       83: {23}
%e A367585     19: {8}        52: {1,1,6}    89: {24}
%e A367585     20: {1,1,3}    53: {16}       90: {1,2,2,3}
%e A367585     23: {9}        59: {17}       92: {1,1,9}
%t A367585 nn=100;
%t A367585 mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q,Count[q,#]==i&], {i,mts}]]];
%t A367585 qq=Table[Times@@mmk[Join@@ConstantArray@@@FactorInteger[n]], {n,nn}];
%t A367585 Select[Range[nn], FreeQ[Take[qq,#-1], qq[[#]]]&]
%Y A367585 Contains all primes A000040 but no other perfect powers A001597.
%Y A367585 All terms are rootless A007916 (have no positive integer roots).
%Y A367585 Positions of squarefree terms appear to be A073485.
%Y A367585 Contains no nonprime prime powers A246547.
%Y A367585 The MMK triangle is A367579, sum A367581, min A055396, max A367583.
%Y A367585 Sorted positions of first appearances in A367580.
%Y A367585 Sorted version of A367584.
%Y A367585 Complement of A367768.
%Y A367585 A007947 gives squarefree kernel.
%Y A367585 A027746 lists prime factors, length A001222, indices A112798.
%Y A367585 A027748 lists distinct prime factors, length A001221, indices A304038.
%Y A367585 A071625 counts distinct prime exponents.
%Y A367585 A124010 gives prime signature, sorted A118914.
%Y A367585 Cf. A020639, A051904, A072774, A130091, A181819, A238747, A367582, A367685.
%K A367585 nonn
%O A367585 1,2
%A A367585 _Gus Wiseman_, Nov 29 2023