This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367586 #12 Jun 10 2025 16:32:55 %S A367586 1,2,4,6,8,10,14,16,22,26,30,32,34,36,38,42,46,58,62,64,66,70,74,78, %T A367586 82,86,94,100,102,106,110,114,118,122,128,130,134,138,142,146,154,158, %U A367586 166,170,174,178,182,186,190,194,196,202,206,210,214,216,218,222 %N A367586 Numbers whose prime indices have a multiset multiplicity kernel (in which each prime exponent becomes the least prime factor with that exponent) that is all ones {1,1,...}. Positions of powers of 2 in A367580. %C A367586 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A367586 We define the multiset multiplicity kernel MMK(m) of a multiset m by the following property, holding for all distinct multiplicities k >= 1. If S is the set of elements of multiplicity k in m, then min(S) has multiplicity |S| in MMK(m). For example, MMK({1,1,2,2,3,4,5}) = {1,1,3,3,3}, and MMK({1,2,3,4,5,5,5,5}) = {1,1,1,1,5}. As an operation on multisets MMK is represented by A367579, and as an operation on their ranks it is represented by A367580. %F A367586 Consists of 1 and all even terms of A072774 (powers of squarefree numbers). %e A367586 We have MMK({1,1,2,2}) = {1,1} so 36 is in the sequence. %e A367586 The terms together with their prime indices begin: %e A367586 1: {} %e A367586 2: {1} %e A367586 4: {1,1} %e A367586 6: {1,2} %e A367586 8: {1,1,1} %e A367586 10: {1,3} %e A367586 14: {1,4} %e A367586 16: {1,1,1,1} %e A367586 22: {1,5} %e A367586 26: {1,6} %e A367586 30: {1,2,3} %e A367586 32: {1,1,1,1,1} %e A367586 34: {1,7} %e A367586 36: {1,1,2,2} %e A367586 38: {1,8} %e A367586 42: {1,2,4} %p A367586 isA := proc(n) z := padic:-ordp(n, 2); andseq(z=p[2], p in ifactors(n)[2]) end: %p A367586 select(isA, [seq(1..222)]); # _Peter Luschny_, Jun 10 2025 %t A367586 Select[Range[100], #==1||EvenQ[#]&&SameQ@@Last/@FactorInteger[#]&] %Y A367586 Contains all prime powers A000961 and squarefree numbers A005117. %Y A367586 Partitions of this type (uniform containing 1) are counted by A097986. %Y A367586 Positions of all one rows {1,1,...} in A367579. %Y A367586 Positions of powers of 2 in A367580. %Y A367586 A007947 gives squarefree kernel. %Y A367586 A027746 lists prime factors, length A001222, indices A112798. %Y A367586 A027748 lists distinct prime factors, length A001221, indices A304038. %Y A367586 A071625 counts distinct prime exponents. %Y A367586 A124010 gives prime signature, sorted A118914. %Y A367586 A367581 gives multiset multiplicity kernel sum, max A367583, min A055396. %Y A367586 Cf. A001597, A051904, A072774, A130091, A175781, A367584, A367587, A367685. %K A367586 nonn %O A367586 1,2 %A A367586 _Gus Wiseman_, Nov 30 2023