cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367588 Number of integer partitions of n with exactly two distinct parts, both appearing with the same multiplicity.

This page as a plain text file.
%I A367588 #13 Feb 04 2024 21:22:28
%S A367588 0,0,0,1,1,2,3,3,4,5,6,5,9,6,9,10,11,8,15,9,16,14,15,11,23,14,18,18,
%T A367588 23,14,30,15,26,22,24,22,38,18,27,26,38,20,42,21,37,36,33,23,53,27,42,
%U A367588 34,44,26,54,34,53,38,42,29,74,30,45,49,57,40,66,33,58,46
%N A367588 Number of integer partitions of n with exactly two distinct parts, both appearing with the same multiplicity.
%C A367588 The Heinz numbers of these partitions are given by A268390.
%H A367588 Alois P. Heinz, <a href="/A367588/b367588.txt">Table of n, a(n) for n = 0..10000</a>
%F A367588 G.f.: Sum_{i, j>0} x^(j*(2*i+1))/(1-x^j). - _John Tyler Rascoe_, Feb 04 2024
%e A367588 The a(3) = 1 through a(12) = 9 partitions (A = 10, B = 11):
%e A367588   (21)  (31)  (32)  (42)    (43)  (53)    (54)      (64)    (65)  (75)
%e A367588               (41)  (51)    (52)  (62)    (63)      (73)    (74)  (84)
%e A367588                     (2211)  (61)  (71)    (72)      (82)    (83)  (93)
%e A367588                                   (3311)  (81)      (91)    (92)  (A2)
%e A367588                                           (222111)  (3322)  (A1)  (B1)
%e A367588                                                     (4411)        (4422)
%e A367588                                                                   (5511)
%e A367588                                                                   (333111)
%e A367588                                                                   (22221111)
%t A367588 Table[Sum[Floor[(d-1)/2],{d,Divisors[n]}],{n,30}]
%Y A367588 For any multiplicities we have A002133, ranks A007774.
%Y A367588 For any number of distinct parts we have A047966, ranks A072774.
%Y A367588 For distinct multiplicities we have A182473, ranks A367589.
%Y A367588 These partitions have ranks A268390.
%Y A367588 A000041 counts integer partitions, strict A000009.
%Y A367588 A072233 counts partitions by number of parts.
%Y A367588 A116608 counts partitions by number of distinct parts.
%Y A367588 Cf. A023645, A091602, A116861, A181819, A243978, A367582.
%K A367588 nonn
%O A367588 0,6
%A A367588 _Gus Wiseman_, Dec 01 2023