cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367589 Numbers with exactly two distinct prime factors, both appearing with different exponents.

This page as a plain text file.
%I A367589 #5 Dec 01 2023 09:15:54
%S A367589 12,18,20,24,28,40,44,45,48,50,52,54,56,63,68,72,75,76,80,88,92,96,98,
%T A367589 99,104,108,112,116,117,124,135,136,144,147,148,152,153,160,162,164,
%U A367589 171,172,175,176,184,188,189,192,200,207,208,212,224,232,236,242,244
%N A367589 Numbers with exactly two distinct prime factors, both appearing with different exponents.
%C A367589 First differs from A177425 in lacking 360.
%C A367589 First differs from A182854 in lacking 360.
%C A367589 These are the Heinz numbers of the partitions counted by A182473.
%e A367589 The terms together with their prime indices begin:
%e A367589   12: {1,1,2}
%e A367589   18: {1,2,2}
%e A367589   20: {1,1,3}
%e A367589   24: {1,1,1,2}
%e A367589   28: {1,1,4}
%e A367589   40: {1,1,1,3}
%e A367589   44: {1,1,5}
%e A367589   45: {2,2,3}
%e A367589   48: {1,1,1,1,2}
%e A367589   50: {1,3,3}
%e A367589   52: {1,1,6}
%e A367589   54: {1,2,2,2}
%e A367589   56: {1,1,1,4}
%e A367589   63: {2,2,4}
%e A367589   68: {1,1,7}
%e A367589   72: {1,1,1,2,2}
%t A367589 Select[Range[100], PrimeNu[#]==2&&UnsameQ@@Last/@FactorInteger[#]&]
%Y A367589 The case of any multiplicities is A007774, counts A002133.
%Y A367589 These partitions are counted by A182473.
%Y A367589 The case of equal exponents is A367590, counts A367588.
%Y A367589 A000041 counts integer partitions, strict A000009.
%Y A367589 A091602 counts partitions by greatest multiplicity, least A243978.
%Y A367589 A098859 counts partitions with distinct multiplicities, ranks A130091.
%Y A367589 A116608 counts partitions by number of distinct parts.
%Y A367589 Cf. A071625, A072233, A072774, A109297, A367580.
%K A367589 nonn
%O A367589 1,1
%A A367589 _Gus Wiseman_, Dec 01 2023