This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367589 #5 Dec 01 2023 09:15:54 %S A367589 12,18,20,24,28,40,44,45,48,50,52,54,56,63,68,72,75,76,80,88,92,96,98, %T A367589 99,104,108,112,116,117,124,135,136,144,147,148,152,153,160,162,164, %U A367589 171,172,175,176,184,188,189,192,200,207,208,212,224,232,236,242,244 %N A367589 Numbers with exactly two distinct prime factors, both appearing with different exponents. %C A367589 First differs from A177425 in lacking 360. %C A367589 First differs from A182854 in lacking 360. %C A367589 These are the Heinz numbers of the partitions counted by A182473. %e A367589 The terms together with their prime indices begin: %e A367589 12: {1,1,2} %e A367589 18: {1,2,2} %e A367589 20: {1,1,3} %e A367589 24: {1,1,1,2} %e A367589 28: {1,1,4} %e A367589 40: {1,1,1,3} %e A367589 44: {1,1,5} %e A367589 45: {2,2,3} %e A367589 48: {1,1,1,1,2} %e A367589 50: {1,3,3} %e A367589 52: {1,1,6} %e A367589 54: {1,2,2,2} %e A367589 56: {1,1,1,4} %e A367589 63: {2,2,4} %e A367589 68: {1,1,7} %e A367589 72: {1,1,1,2,2} %t A367589 Select[Range[100], PrimeNu[#]==2&&UnsameQ@@Last/@FactorInteger[#]&] %Y A367589 The case of any multiplicities is A007774, counts A002133. %Y A367589 These partitions are counted by A182473. %Y A367589 The case of equal exponents is A367590, counts A367588. %Y A367589 A000041 counts integer partitions, strict A000009. %Y A367589 A091602 counts partitions by greatest multiplicity, least A243978. %Y A367589 A098859 counts partitions with distinct multiplicities, ranks A130091. %Y A367589 A116608 counts partitions by number of distinct parts. %Y A367589 Cf. A071625, A072233, A072774, A109297, A367580. %K A367589 nonn %O A367589 1,1 %A A367589 _Gus Wiseman_, Dec 01 2023