cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367590 Numbers with exactly two distinct prime factors, both appearing with the same exponent.

This page as a plain text file.
%I A367590 #12 Aug 04 2025 15:43:44
%S A367590 6,10,14,15,21,22,26,33,34,35,36,38,39,46,51,55,57,58,62,65,69,74,77,
%T A367590 82,85,86,87,91,93,94,95,100,106,111,115,118,119,122,123,129,133,134,
%U A367590 141,142,143,145,146,155,158,159,161,166,177,178,183,185,187,194
%N A367590 Numbers with exactly two distinct prime factors, both appearing with the same exponent.
%C A367590 First differs from A268390 in lacking 210.
%C A367590 First differs from A238748 in lacking 210.
%C A367590 These are the Heinz numbers of the partitions counted by A367588.
%H A367590 Michael De Vlieger, <a href="/A367590/b367590.txt">Table of n, a(n) for n = 1..10000</a>
%F A367590 Union of A006881 and A303661. - _Michael De Vlieger_, Dec 01 2023
%e A367590 The terms together with their prime indices begin:
%e A367590      6: {1,2}         57: {2,8}        106: {1,16}
%e A367590     10: {1,3}         58: {1,10}       111: {2,12}
%e A367590     14: {1,4}         62: {1,11}       115: {3,9}
%e A367590     15: {2,3}         65: {3,6}        118: {1,17}
%e A367590     21: {2,4}         69: {2,9}        119: {4,7}
%e A367590     22: {1,5}         74: {1,12}       122: {1,18}
%e A367590     26: {1,6}         77: {4,5}        123: {2,13}
%e A367590     33: {2,5}         82: {1,13}       129: {2,14}
%e A367590     34: {1,7}         85: {3,7}        133: {4,8}
%e A367590     35: {3,4}         86: {1,14}       134: {1,19}
%e A367590     36: {1,1,2,2}     87: {2,10}       141: {2,15}
%e A367590     38: {1,8}         91: {4,6}        142: {1,20}
%e A367590     39: {2,6}         93: {2,11}       143: {5,6}
%e A367590     46: {1,9}         94: {1,15}       145: {3,10}
%e A367590     51: {2,7}         95: {3,8}        146: {1,21}
%e A367590     55: {3,5}        100: {1,1,3,3}    155: {3,11}
%t A367590 Select[Range[100], SameQ@@Last/@If[#==1, {}, FactorInteger[#]]&&PrimeNu[#]==2&]
%t A367590 Select[Range[200],PrimeNu[#]==2&&Length[Union[FactorInteger[#][[;;,2]]]]==1&] (* _Harvey P. Dale_, Aug 04 2025 *)
%Y A367590 The case of any multiplicities is A007774, counts A002133.
%Y A367590 Partitions of this type are counted by A367588.
%Y A367590 The case of distinct exponents is A367589, counts A182473.
%Y A367590 A000041 counts integer partitions, strict A000009.
%Y A367590 A091602 counts partitions by greatest multiplicity, least A243978.
%Y A367590 A116608 counts partitions by number of distinct parts.
%Y A367590 Cf. A006881, A039956, A071625, A072233, A072774, A109297, A303661, A367580.
%K A367590 nonn
%O A367590 1,1
%A A367590 _Gus Wiseman_, Dec 01 2023