This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367590 #12 Aug 04 2025 15:43:44 %S A367590 6,10,14,15,21,22,26,33,34,35,36,38,39,46,51,55,57,58,62,65,69,74,77, %T A367590 82,85,86,87,91,93,94,95,100,106,111,115,118,119,122,123,129,133,134, %U A367590 141,142,143,145,146,155,158,159,161,166,177,178,183,185,187,194 %N A367590 Numbers with exactly two distinct prime factors, both appearing with the same exponent. %C A367590 First differs from A268390 in lacking 210. %C A367590 First differs from A238748 in lacking 210. %C A367590 These are the Heinz numbers of the partitions counted by A367588. %H A367590 Michael De Vlieger, <a href="/A367590/b367590.txt">Table of n, a(n) for n = 1..10000</a> %F A367590 Union of A006881 and A303661. - _Michael De Vlieger_, Dec 01 2023 %e A367590 The terms together with their prime indices begin: %e A367590 6: {1,2} 57: {2,8} 106: {1,16} %e A367590 10: {1,3} 58: {1,10} 111: {2,12} %e A367590 14: {1,4} 62: {1,11} 115: {3,9} %e A367590 15: {2,3} 65: {3,6} 118: {1,17} %e A367590 21: {2,4} 69: {2,9} 119: {4,7} %e A367590 22: {1,5} 74: {1,12} 122: {1,18} %e A367590 26: {1,6} 77: {4,5} 123: {2,13} %e A367590 33: {2,5} 82: {1,13} 129: {2,14} %e A367590 34: {1,7} 85: {3,7} 133: {4,8} %e A367590 35: {3,4} 86: {1,14} 134: {1,19} %e A367590 36: {1,1,2,2} 87: {2,10} 141: {2,15} %e A367590 38: {1,8} 91: {4,6} 142: {1,20} %e A367590 39: {2,6} 93: {2,11} 143: {5,6} %e A367590 46: {1,9} 94: {1,15} 145: {3,10} %e A367590 51: {2,7} 95: {3,8} 146: {1,21} %e A367590 55: {3,5} 100: {1,1,3,3} 155: {3,11} %t A367590 Select[Range[100], SameQ@@Last/@If[#==1, {}, FactorInteger[#]]&&PrimeNu[#]==2&] %t A367590 Select[Range[200],PrimeNu[#]==2&&Length[Union[FactorInteger[#][[;;,2]]]]==1&] (* _Harvey P. Dale_, Aug 04 2025 *) %Y A367590 The case of any multiplicities is A007774, counts A002133. %Y A367590 Partitions of this type are counted by A367588. %Y A367590 The case of distinct exponents is A367589, counts A182473. %Y A367590 A000041 counts integer partitions, strict A000009. %Y A367590 A091602 counts partitions by greatest multiplicity, least A243978. %Y A367590 A116608 counts partitions by number of distinct parts. %Y A367590 Cf. A006881, A039956, A071625, A072233, A072774, A109297, A303661, A367580. %K A367590 nonn %O A367590 1,1 %A A367590 _Gus Wiseman_, Dec 01 2023