cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367592 Expansion of 1/((1-x) * (1-4*x)^3).

This page as a plain text file.
%I A367592 #19 Aug 04 2025 14:53:09
%S A367592 1,13,109,749,4589,26093,140781,730605,3679725,18097645,87303661,
%T A367592 414459373,1941186029,8987616749,41199871469,187228759533,
%U A367592 844358755821,3782116386285,16838816966125,74563177424365,328550363440621,1441256130749933,6296699479008749
%N A367592 Expansion of 1/((1-x) * (1-4*x)^3).
%H A367592 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (13,-60,112,-64).
%F A367592 G.f.: 1/((1-x) * (1-4*x)^3).
%F A367592 a(n) = ((9*n^2+21*n+14) * 4^(n+1) - 2)/54.
%F A367592 a(n) = 13*a(n-1) - 60*a(n-2) + 112*a(n-3) - 64*a(n-4). - _Wesley Ivan Hurt_, Aug 04 2025
%t A367592 CoefficientList[Series[1/((1 - x)*(1 - 4*x)^3), {x, 0, 30}], x] (* _Wesley Ivan Hurt_, Aug 04 2025 *)
%o A367592 (PARI) a(n) = ((9*n^2+21*n+14)*4^(n+1)-2)/54;
%Y A367592 Partial sums of A038845.
%Y A367592 Cf. A055580, A367591.
%K A367592 nonn,easy
%O A367592 0,2
%A A367592 _Seiichi Manyama_, Nov 24 2023