This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367593 #55 Aug 11 2024 16:53:03 %S A367593 0,1,10,100,147,1000,1099,1407,10000,14007,100000,140007,1000000, %T A367593 1400007,2124736,10000000,14000007,100000000,123456789,140000007, %U A367593 1000000000,1234506789,1400000007,10000000000,12345006789,14000000007,21247524736,100000000000,123450006789 %N A367593 Nonnegative integers k such that (R(k) - 1)/(k + 1) is an integer, where R(k) is the digit reversal of k. %C A367593 Among the terms of this sequence, there are: %C A367593 the powers of 10 (cf. A011557); %C A367593 the numbers of the form 14*10^h + 7 = 7*A199682(h) for h > 0; %C A367593 the numbers of the form 12345*10^m + 6789 = A367650(m) for m > 3. %C A367593 From _Chai Wah Wu_, Dec 01 2023: (Start) %C A367593 First digit of positive terms must be either 1 or 2. If first digit is 1, then last digit must be 0,1,4,5,7 or 9. If first digit is 2, then last digit is 6. In particular, if a, b, c are the first digit, last digit and (R(k)-1)/(k+1) of a term k>0, then (a, b, c) must take on values from one of the following triples: %C A367593 (a, b, c): (1, 0, 0), (1, 1, 0), (1, 4, 2), (1, 4, 4), (1, 5, 5), (1, 7, 5), %C A367593 (1, 9, 4), (1, 9, 5), (1, 9, 6), (1, 9, 7), (1, 9, 8), (1, 9, 9), (2, 6, 3). %C A367593 Numbers of the form 21 [2475]* 24736 are terms of this sequence, where [2475]* denote a (possibly zero) repetition of the digits 2475. The first few terms of this form are: 2124736, 21247524736, 212475247524736, ... %C A367593 Similarly numbers of the form 21261 [2475]* 24738736 are terms of this sequence: %C A367593 2126124738736, 21261247524738736, 212612475247524738736, ... (End) %C A367593 More generally, numbers of the form 21 [261]^k [2475]* 2473 [873]^k 6 are terms of this sequence, where [261]^k denote the digits '261' repeated k times with k>=0: e.g. 21261261247524752475247524738738736, ... It appears that all terms with first digit 2 and last digit 6 are of this form. - _Chai Wah Wu_, Dec 02 2023 %H A367593 Chai Wah Wu, <a href="/A367593/b367593.txt">Table of n, a(n) for n = 1..44</a> %F A367593 A367728(a(n)) = 1. %e A367593 123456789 is a term since (987654321 - 1)/(123456789 + 1) = 8, which is an integer. %t A367593 a={}; For[k=0, k<=10^10, k++,If[IntegerQ[(FromDigits[Reverse[IntegerDigits[k]]]-1)/(k+1)],AppendTo[a,k]]]; a %t A367593 Select[Range[0,10^6],IntegerQ[(IntegerReverse[#]-1)/(#+1)]&] (* The program generates the first 13 terms of the sequence. *) (* _Harvey P. Dale_, Aug 11 2024 *) %o A367593 (Python) %o A367593 def digit_reversal(n): %o A367593 return int(str(n)[::-1]) %o A367593 def find_integers(): %o A367593 result = [] %o A367593 for k in range(0, 10**10): %o A367593 reversed_k = digit_reversal(k) %o A367593 if (reversed_k - 1) % (k + 1) == 0: %o A367593 result.append(k) %o A367593 return result %o A367593 integers_list = find_integers() %o A367593 print(integers_list) %o A367593 (Python) %o A367593 from itertools import product, count, islice %o A367593 def A367593_gen(): # generator of terms %o A367593 yield from (0,1,10) %o A367593 for l in count(1): %o A367593 m = 10**(l+1) %o A367593 for d in product('0123456789',repeat=l): %o A367593 for a, b, c in ((1, 0, 0), (1, 1, 0), (1, 4, 2), (1, 5, 5), (1, 7, 5)): %o A367593 k = a*m+int(s:=''.join(d))*10+b %o A367593 r = b*m+int(s[::-1])*10+a %o A367593 if c*(k+1)==r-1: %o A367593 yield k %o A367593 a,b = 1,9 %o A367593 k = a*m+int(s:=''.join(d))*10+b %o A367593 r = b*m+int(s[::-1])*10+a %o A367593 if not (r-1)%(k+1): %o A367593 yield k %o A367593 a,b,c=2,6,3 %o A367593 for d in product('0123456789',repeat=l): %o A367593 k = a*m+int(s:=''.join(d))*10+b %o A367593 r = b*m+int(s[::-1])*10+a %o A367593 if c*(k+1)==r-1: %o A367593 yield k %o A367593 A367593_list = list(islice(A367593_gen(),20)) # _Chai Wah Wu_, Dec 01 2023 %o A367593 (PARI) isok(k) = denominator((fromdigits(Vecrev(digits(k))) - 1)/(k + 1)) == 1; \\ _Michel Marcus_, Nov 30 2023 %Y A367593 Cf. A004086, A011557, A199682, A367650. %Y A367593 Cf. A367727, A367728, A367740. %K A367593 nonn,base %O A367593 1,3 %A A367593 _Stefano Spezia_, Nov 24 2023