A367596 The denominators of a series that converges to log(2) obtained using Whittaker's root series formula.
1, 3, 39, 975, 40575, 844501, 73824373, 25814174655, 3868475107935, 724655165594943, 165910226233669599, 15194097535426090645, 4933425635511640104565, 5606480381963363479902783, 2450522415523358900846598879, 1224105922303030827661963930815, 693005978151926719613680243125855
Offset: 1
Examples
a(1) is the denominator of -(-1)/1 = 1/1. a(2) is the denominator of -(-1)^2*(1/2!)/(1*det((1,1/2!),(-1,1))) = -(1/2)/(1*(3/2)) = -1/3. a(3) is the denominator of -(-1)^3*det((1/2!,1/3!),(1,1/2!))/(det((1,1/2!),(-1,1))*det((1,1/2!,1/3!),(-1,1,1/2!),(0,-1,1))) = (1/12)/((3/2)*(13/6)) = 1/39.
Links
- E. T. Whittaker and G. Robinson, The Calculus of Observations, London: Blackie & Son, Ltd. 1924, pp. 120-123.
Programs
-
Mathematica
c[k_] := If[k < 0, 0, SeriesCoefficient[Exp[x] - 2, {x, 0, k}]]; Join[{1}, Table[(-1)^n*Det[ToeplitzMatrix[Table[c[3 - j], {j, 1, n}], Table[c[j + 1], {j, 1, n}]]] / (Det[ToeplitzMatrix[Table[c[2 - j], {j, 1, n}], Table[c[j], {j, 1, n}]]] * Det[ToeplitzMatrix[Table[c[2 - j], {j, 1, n + 1}], Table[c[j], {j, 1, n + 1}]]]), {n, 1, 20}] // Denominator] (* Vaclav Kotesovec, Nov 26 2023 *)
Formula
a(n) is the denominator of the simplified fraction -(-1)^n*det ToeplitzMatrix((c(2),c(1),c(0),0,0,...,0),(c(2),c(3),c(4),...,c(n+1)))/(det ToeplitzMatrix((c(1),c(0),0,...,0),(c(1),c(2),c(3),...,c(n)))*det ToeplitzMatrix((c(1),c(0),0,...,0),(c(1),c(2),c(3),...,c(n+1)))), where c(0)=-1, c(1)=1, c(2)=1/2!, c(3)=1/3!, c(4)=1/4!, c(n)=1/n!.
Extensions
More terms from Vaclav Kotesovec, Nov 26 2023
Comments