cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367596 The denominators of a series that converges to log(2) obtained using Whittaker's root series formula.

Original entry on oeis.org

1, 3, 39, 975, 40575, 844501, 73824373, 25814174655, 3868475107935, 724655165594943, 165910226233669599, 15194097535426090645, 4933425635511640104565, 5606480381963363479902783, 2450522415523358900846598879, 1224105922303030827661963930815, 693005978151926719613680243125855
Offset: 1

Views

Author

Raul Prisacariu, Nov 24 2023

Keywords

Comments

The Whittaker's root series formula is applied to -1 + x + x^2/2! + x^3/3! + x^4/4! + x^5/5! + x^6/6! + ..., which is the Taylor expansion of e^x with the first coefficient having a negative sign (-1 instead of 1). We obtain log(2) = 1 - 1/3 + 1/39 + 1/975 - 7/40575 - 13/844501 + 115/73824373 + 5657/25814174655 .... The sequence is formed by the denominators of the series.

Examples

			a(1) is the denominator of -(-1)/1 = 1/1.
a(2) is the denominator of -(-1)^2*(1/2!)/(1*det((1,1/2!),(-1,1))) = -(1/2)/(1*(3/2)) = -1/3.
a(3) is the denominator of -(-1)^3*det((1/2!,1/3!),(1,1/2!))/(det((1,1/2!),(-1,1))*det((1,1/2!,1/3!),(-1,1,1/2!),(0,-1,1))) = (1/12)/((3/2)*(13/6)) = 1/39.
		

Crossrefs

Cf. A002162, A365594, A367597 (numerators).

Programs

  • Mathematica
    c[k_] := If[k < 0, 0, SeriesCoefficient[Exp[x] - 2, {x, 0, k}]]; Join[{1}, Table[(-1)^n*Det[ToeplitzMatrix[Table[c[3 - j], {j, 1, n}], Table[c[j + 1], {j, 1, n}]]] / (Det[ToeplitzMatrix[Table[c[2 - j], {j, 1, n}], Table[c[j], {j, 1, n}]]] * Det[ToeplitzMatrix[Table[c[2 - j], {j, 1, n + 1}], Table[c[j], {j, 1, n + 1}]]]), {n, 1, 20}] // Denominator] (* Vaclav Kotesovec, Nov 26 2023 *)

Formula

a(n) is the denominator of the simplified fraction -(-1)^n*det ToeplitzMatrix((c(2),c(1),c(0),0,0,...,0),(c(2),c(3),c(4),...,c(n+1)))/(det ToeplitzMatrix((c(1),c(0),0,...,0),(c(1),c(2),c(3),...,c(n)))*det ToeplitzMatrix((c(1),c(0),0,...,0),(c(1),c(2),c(3),...,c(n+1)))), where c(0)=-1, c(1)=1, c(2)=1/2!, c(3)=1/3!, c(4)=1/4!, c(n)=1/n!.

Extensions

More terms from Vaclav Kotesovec, Nov 26 2023