cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A367504 a(1) = 2; for n > 1, a(n) = a(n-1) + 2*gpf(a(n-1)), where gpf(k) = A006530(k) = greatest prime dividing k.

Original entry on oeis.org

2, 6, 12, 18, 24, 30, 40, 50, 60, 70, 84, 98, 112, 126, 140, 154, 176, 198, 220, 242, 264, 286, 312, 338, 364, 390, 416, 442, 476, 510, 544, 578, 612, 646, 684, 722, 760, 798, 836, 874, 920, 966, 1012, 1058, 1104, 1150, 1196, 1242, 1288, 1334, 1392, 1450, 1508, 1566, 1624, 1682, 1740, 1798
Offset: 1

Views

Author

Scott R. Shannon, Nov 21 2023

Keywords

Comments

Conjecture: with the requirement that the prime factorization of each term is written so that the primes are ordered from smallest to largest, the sequence is the lexicographically earliest infinite sequence of distinct positive numbers such that gpf(a(n-1)) * lpf(a(n)) = |a(n) - a(n-1)|, where gpf(k) = A006530(k) = greatest prime factor of k and lpf(k) = A020639(k) = least prime factor of k. In this way the sequence is the ordered prime factorization version of the 'Commas sequence', A121805. One can show that, for such a sequence to be infinite, no odd number can appear. Although for many terms a lower even number can be chosen for the following term, which can lead to even lower numbers for further terms, it is conjectured all such choices will ultimately halt the sequence as a number is eventually reached for which no unused next number exists which follows the required rule for the difference between the terms. Therefore all terms must be larger than the previous, and the earliest such infinite sequence is the given sequence.
See A367465 for the sequence when the requirement that the primes in the factorization of each term must be in order is removed.

Examples

			a(7) = 40 as a(6) = 30 = 2*3*5, thus A006530(30) = 5 and a(7) = a(6) + 2*5 = 30 + 2*5 = 40.
		

Crossrefs

Programs

  • Mathematica
    NestList[#+2FactorInteger[#][[-1,1]]&,2,100] (* Paolo Xausa, Dec 31 2023 *)

Formula

a(n) = 2*A123581(n). The exponent of 2 in a(2n) is 1+A367624(n). - N. J. A. Sloane, Dec 06 2023
Showing 1-1 of 1 results.