A367631 Triangle read by rows: T(n,k) is the number of permutations of length n avoiding simultaneously the patterns 123 and 132 with the maximum number of non-overlapping descents equal k.
1, 1, 0, 1, 1, 0, 0, 4, 0, 0, 0, 5, 3, 0, 0, 0, 2, 14, 0, 0, 0, 0, 0, 23, 9, 0, 0, 0, 0, 0, 16, 48, 0, 0, 0, 0, 0, 0, 4, 97, 27, 0, 0, 0, 0, 0, 0, 0, 94, 162, 0, 0, 0, 0, 0, 0, 0, 0, 44, 387, 81, 0, 0, 0, 0, 0, 0, 0, 0, 8, 476, 540, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 320, 1485, 243, 0, 0, 0, 0, 0, 0
Offset: 0
Examples
Triangle T(n,k) begins: 1; 1, 0; 1, 1, 0; 0, 4, 0, 0; 0, 5, 3, 0, 0; 0, 2, 14, 0, 0, 0; 0, 0, 23, 9, 0, 0, 0; 0, 0, 16, 48, 0, 0, 0, 0; 0, 0, 4, 97, 27, 0, 0, 0, 0; 0, 0, 0, 94, 162, 0, 0, 0, 0, 0; 0, 0, 0, 44, 387, 81, 0, 0, 0, 0, 0; 0, 0, 0, 8, 476, 540, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 320, 1485, 243, 0, 0, 0, 0, 0, 0; ...
Links
- Tian Han and Sergey Kitaev, Joint distributions of statistics over permutations avoiding two patterns of length 3, arXiv:2311.02974 [math.CO], 2023. See formula 7 at page 7.
Crossrefs
Formula
G.f.: (1 + x + x^2 - 2*x^2*z - x^3*z)/(1 - 3*x^2*z - 2*x^3*z).
Comments