cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367636 a(n) is the number of distinct combinations that can be created by painting the sections on a shape with n divisions that rotates around its center and consists of 4 identical arms at 90-degree intervals.

This page as a plain text file.
%I A367636 #53 Jan 20 2024 09:17:04
%S A367636 2,12,140,2088,32912,524832,8390720,134226048,2147516672,34359869952,
%T A367636 549756339200,8796095121408,140737496748032,2251799847247872,
%U A367636 36028797153198080,576460752840327168,9223372039002324992,147573952598266478592,2361183241469182607360,37778931863094601187328
%N A367636 a(n) is the number of distinct combinations that can be created by painting the sections on a shape with n divisions that rotates around its center and consists of 4 identical arms at 90-degree intervals.
%C A367636 A shape/object consists of n divisions (cells) that rotates around its center and consists of 4 identical arms at 90-degree intervals.
%C A367636 Each division (cell) can be unpainted (white) or painted (black).
%C A367636 (4n-3) is the number of divisions (cells) on the object/shape which consists of 4 identical arms at 90-degree intervals.
%D A367636 A. Nesin, Matematik ve sonsuz [Math and infinity], Nesin Yayıncılık, 2019, pages 137-143.
%H A367636 Gulnur Ozbek, <a href="/A367636/a367636_1.pdf">Illustrations for initial terms</a> (with painted cells black, unpainted cells white).
%H A367636 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (22,-104,128).
%F A367636 a(n) = 2^(4n-5) + 2^(2n-3) + 2^(n-1).
%F A367636 a(n) is the sum of the terms in the n-th row of the following triangle, where k is the number of divisions (cells) which are colored/painted black.
%F A367636 .
%F A367636 n\k| 0 1  2   3   4    5    6    7    8    9   10   11   12   13  14 ...  4n-3
%F A367636 ---+--------------------------------------------------------------------------
%F A367636  1 | 1 1
%F A367636  2 | 1 2  3   3   2    1
%F A367636  3 | 1 3 10  22  34   34   22   10    3    1
%F A367636  4 | 1 4 21  73 184  327  434  434  327  184   73   21    4   1
%F A367636  5 | 1 5 36 172 604 1556 3108 4876 6098 6098 4876 3108 1556 604 172 36 5 1
%F A367636 ...|
%F A367636  n | 1 n ...
%F A367636 The term at the intersection of any row and column is
%F A367636     C((4n-3),k)/4 + C([(4n-3)/2],[k/2])/4
%F A367636                   + C([(4n-3)/4],[k/4])/2  for k == 0 or 1 (mod 4),
%F A367636     C((4n-3),k)/4 + C([(4n-3)/2],[k/2])/4  for k == 2 or 3 (mod 4)
%F A367636   where [] is the floor function.
%F A367636 G.f.: 2*x*(1 - 16*x + 42*x^2)/((1 - 2*x)*(1 - 4*x)*(1 - 16*x)). - _Stefano Spezia_, Dec 03 2023
%e A367636 In the figures below, "[ ]" represents an unpainted cell; "[o]" represents a painted cell.
%e A367636 For n = 1, there are a(1) = 2 combinations:
%e A367636 .
%e A367636   [ ]  [o]
%e A367636 .
%e A367636 For n = 2, there are a(2) = 12 combinations:
%e A367636 .
%e A367636     [ ]         [ ]         [ ]        [ ]
%e A367636  [ ][ ][ ]   [ ][ ][o]   [ ][o][ ]  [ ][o][o]
%e A367636     [ ]         [ ]         [ ]        [ ]
%e A367636 .
%e A367636     [ ]         [o]         [o]        [o]
%e A367636  [o][ ][o]   [ ][ ][o]   [o][ ][ ]  [ ][o][ ]
%e A367636     [ ]         [ ]         [o]        [o]
%e A367636 .
%e A367636     [ ]         [o]         [o]        [o]
%e A367636  [o][o][ ]   [o][o][ ]   [o][ ][o]  [o][o][o]
%e A367636     [o]         [o]         [o]        [o]
%e A367636 .
%e A367636 For n = 3, there are a(3) = 140 combinations:
%e A367636 .
%e A367636        [ ]               [ ]               [ ]              [ ]
%e A367636        [ ]               [ ]               [ ]              [ ]
%e A367636  [ ][ ][ ][ ][ ]   [ ][ ][ ][o][ ]   [ ][ ][ ][ ][o]  [ ][ ][o][ ][ ]
%e A367636        [ ]               [ ]               [ ]              [ ]
%e A367636        [ ]               [ ]               [ ]              [ ]
%e A367636 .
%e A367636        [ ]               [ ]               [ ]              [ ]
%e A367636        [ ]               [ ]               [ ]              [ ]
%e A367636  [ ][ ][o][o][ ]   [ ][ ][o][ ][o]   [ ][ ][ ][o][o]  [ ][o][ ][o][ ]
%e A367636        [ ]               [ ]               [ ]              [ ]
%e A367636        [ ]               [ ]               [ ]              [ ]
%e A367636 ...
%t A367636 CoefficientList[Series[2*(1 - 16*x + 42*x^2)/((1 - 2*x)*(1 - 4*x)*(1 - 16*x)), {x, 0, 20}], x] (* _Wesley Ivan Hurt_, Dec 10 2023 *)
%K A367636 nonn,easy
%O A367636 1,1
%A A367636 _Kadir E. Celik_, _Alp Giray Datlar_, _Iskender Ozturk_, and _Gulnur Ozbek_, Nov 25 2023