cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367642 a(n) is the smallest natural number such that the number of perfect powers less than n equals the number of perfect powers between n and a(n) (exclusive).

This page as a plain text file.
%I A367642 #24 Sep 10 2024 00:25:30
%S A367642 2,5,5,9,10,10,10,17,28,33,33,33,33,33,33,37,50,50,50,50,50,50,50,50,
%T A367642 65,82,101,122,122,122,122,126,129,129,129,145,170,170,170,170,170,
%U A367642 170,170,170,170,170,170,170,197,217,217,217,217,217,217,217,217,217
%N A367642 a(n) is the smallest natural number such that the number of perfect powers less than n equals the number of perfect powers between n and a(n) (exclusive).
%e A367642 a(1) = 2 as there are no perfect powers less than 1, and none between 1 and 2.
%e A367642 a(9) = 28 as there are 3 perfect powers less than 9 (1, 4 and 8), and between 9 and 28 (16, 25 and 27).
%o A367642 (PARI) ispp(n) = {ispower(n) || n==1}; \\ A001597
%o A367642 f(n) = sum(k=1, n-1, ispp(k));
%o A367642 a(n) = my(k=n, nb=f(n)); while(f(k)-f(n+1) != f(n), k++); k; \\ _Michel Marcus_, Nov 30 2023
%o A367642 (Python)
%o A367642 from sympy import mobius, integer_nthroot, perfect_power
%o A367642 def A367642(n):
%o A367642     if n == 1: return 2
%o A367642     def f(x): return int(1-sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
%o A367642     m = (f(n)<<1)-bool(perfect_power(n))
%o A367642     def g(x): return m+x-f(x)
%o A367642     def bisection(f,kmin=0,kmax=1):
%o A367642         while f(kmax) > kmax: kmax <<= 1
%o A367642         while kmax-kmin > 1:
%o A367642             kmid = kmax+kmin>>1
%o A367642             if f(kmid) <= kmid:
%o A367642                 kmax = kmid
%o A367642             else:
%o A367642                 kmin = kmid
%o A367642         return kmax
%o A367642     return bisection(g,m,m)+1 # _Chai Wah Wu_, Sep 09 2024
%Y A367642 Cf. A001597, A069623.
%K A367642 nonn
%O A367642 1,1
%A A367642 _Tanmaya Mohanty_, Nov 25 2023