cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367654 G.f. A(x) satisfies A(x) = 1 / (1 - x * (1 + x + x^2 + x^3 + x^4) * A(x^5)).

This page as a plain text file.
%I A367654 #13 Nov 27 2023 10:48:21
%S A367654 1,1,2,4,8,16,32,64,128,256,512,1025,2051,4104,8212,16432,32882,65798,
%T A367654 131664,263464,527200,1054948,2110989,4224165,8452706,16914168,
%U A367654 33845864,67726796,135523764,271187944,542656864,1085875984,2172877052,4348005437,8700515871
%N A367654 G.f. A(x) satisfies A(x) = 1 / (1 - x * (1 + x + x^2 + x^3 + x^4) * A(x^5)).
%H A367654 Seiichi Manyama, <a href="/A367654/b367654.txt">Table of n, a(n) for n = 0..1000</a>
%F A367654 a(0) = 1; a(n) = Sum_{k=0..n-1} a(floor(k/5)) * a(n-1-k).
%o A367654 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, i-1, v[j\5+1]*v[i-j])); v;
%Y A367654 Cf. A127680, A367652, A367653.
%Y A367654 Cf. A367661.
%K A367654 nonn
%O A367654 0,3
%A A367654 _Seiichi Manyama_, Nov 26 2023