This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367669 #14 Dec 10 2023 08:25:37 %S A367669 0,9,32,108,360,1168,3638,11492,35638,111059 %N A367669 Number of degree 3 number fields unramified outside the first n prime numbers. %C A367669 B. Matschke showed that a(11) = 340618 assuming the Generalized Riemann Hypothesis. %H A367669 K. Belabas, <a href="https://doi.org/10.1090/S0025-5718-97-00846-6">A fast algorithm to compute cubic fields</a>, Math. Comp. 66 (1997), no. 219, 1213-1237. %H A367669 J. W. Jones and D. P. Roberts, <a href="https://doi.org/10.1112/S1461157014000424">A database of number fields</a>, LMS J. Comput. Math. 17 (2014), no. 1, 595-618. %H A367669 B. Matschke, <a href="https://github.com/bmatschke/s-unit-equations/tree/main/elliptic-curve-tables/fields/numberfields-unramified-outside-S">Number fields unramified outside S</a>. %e A367669 For n = 1, there are no cubic number fields unramified away from 2, so a(1) = 0. %e A367669 For n = 2, the a(2) = 9 cubic number fields unramified away from {2,3} can be given by Q(a) where a is a root of x^3 - 3x - 1, x^3 - 2, x^3 + 3x - 2, x^3 - 3, x^3 - 3x - 4, x^3 - 3x - 10, x^3 - 12, x^3 - 6, or x^3 - 9x - 6. %Y A367669 Cf. A126646 (degree 2), A368057 (degree 4). %K A367669 nonn,more %O A367669 1,2 %A A367669 _Robin Visser_, Nov 26 2023