cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367673 Numerator of the greatest probability that a particular free polyomino with n cells appears in the version of the Eden growth model described in A367671.

This page as a plain text file.
%I A367673 #12 Dec 03 2023 11:34:37
%S A367673 1,1,2,5,253,2657,1839533,11611594193,119221101341,3152002318138937,
%T A367673 2390156990671551019,391219943696485871537172611,
%U A367673 1374972518894998705708792681,21138479762006403022428257137861
%N A367673 Numerator of the greatest probability that a particular free polyomino with n cells appears in the version of the Eden growth model described in A367671.
%C A367673 a(n) is the numerator of the maximum of A367671/A367672 over the n-th row.
%H A367673 <a href="/index/Pol#polyominoes">Index entries for sequences related to polyominoes</a>.
%e A367673 For 1 <= n <= 14, the following are the unique polyominoes that have the maximum probabilities for their respective sizes:
%e A367673                     _      _      _
%e A367673         _    _     | |    | |_   | |_ _
%e A367673    _   | |  | |_   | |_   |   |  |    _|
%e A367673   |_|  |_|  |_ _|  |_ _|  |_ _|  |_ _|
%e A367673                                       _ _
%e A367673      _          _          _ _      _|   |_
%e A367673    _| |_ _    _| |_ _    _|   |_   |      _|
%e A367673   |_     _|  |      _|  |      _|  |_ _  |
%e A367673     |_ _|    |_ _ _|    |_ _ _|        |_|
%e A367673                            _          _
%e A367673      _ _      _ _ _       | |_      _| |_
%e A367673    _|   |_   |     |_    _|   |_   |     |_
%e A367673   |      _|  |      _|  |       |  |       |
%e A367673   |_    |    |_    |    |_     _|  |_     _|
%e A367673     |_ _|      |_ _|      |_ _|      |_ _|
%Y A367673 Cf. A367671, A367672, A367674 (denominators), A367677, A367762.
%K A367673 nonn,frac,more
%O A367673 1,3
%A A367673 _Pontus von Brömssen_, Nov 26 2023