cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367683 Numbers whose sorted prime signature is the same as the multiset multiplicity kernel of their prime indices.

This page as a plain text file.
%I A367683 #12 Dec 01 2023 15:57:03
%S A367683 1,2,6,9,10,12,14,18,22,26,30,34,38,40,42,46,58,62,66,70,74,78,82,86,
%T A367683 90,94,102,106,110,112,114,118,122,125,126,130,134,138,142,146,154,
%U A367683 158,166,170,174,178,182,186,190,194,198,202,206,210,214,218,222,225
%N A367683 Numbers whose sorted prime signature is the same as the multiset multiplicity kernel of their prime indices.
%C A367683 We define the multiset multiplicity kernel (MMK) of a positive integer n to be the product of (least prime factor with exponent k)^(number of prime factors with exponent k) over all distinct exponents k appearing in the prime factorization of n. For example, 90 has prime factorization 2^1 * 3^2 * 5^1, so for k = 1 we have 2^2, and for k = 2 we have 3^1, so MMK(90) = 12. As an operation on multisets MMK is represented by A367579, and as an operation on their ranks it is represented by A367580.
%H A367683 Michael De Vlieger, <a href="/A367683/b367683.txt">Table of n, a(n) for n = 1..10000</a>
%H A367683 Michael De Vlieger, <a href="/A367683/a367683.png">20 X 20 color coded list of terms</a>, color function: gray = 1, red = prime, gold = composite prime power, green = squarefree composite, blue-purple = numbers neither squarefree nor prime powers. Bright green = primorial, light green = even squarefree semiprime, light blue = highly composite, middle blue = in A055932, purple = squareful but not a prime power.
%H A367683 Michael De Vlieger, <a href="/A367683/a367683_1.png">485 X 485 = 235225-term raster</a> with the same color code as above.
%e A367683 The terms together with their prime indices begin:
%e A367683     1: {}
%e A367683     2: {1}
%e A367683     6: {1,2}
%e A367683     9: {2,2}
%e A367683    10: {1,3}
%e A367683    12: {1,1,2}
%e A367683    14: {1,4}
%e A367683    18: {1,2,2}
%e A367683    22: {1,5}
%e A367683    26: {1,6}
%e A367683    30: {1,2,3}
%e A367683    34: {1,7}
%e A367683    38: {1,8}
%e A367683    40: {1,1,1,3}
%e A367683    42: {1,2,4}
%e A367683    46: {1,9}
%e A367683    58: {1,10}
%e A367683    62: {1,11}
%e A367683    66: {1,2,5}
%e A367683    70: {1,3,4}
%t A367683 mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q,Count[q,#]==i&], {i,mts}]]];
%t A367683 Select[Range[100], #==1||Sort[Last/@FactorInteger[#]] == mmk[PrimePi/@Join@@ConstantArray@@@FactorInteger[#]]&]
%Y A367683 Squarefree terms are A039956.
%Y A367683 The LHS is A118914, unsorted A124010.
%Y A367683 Prime-power terms are A307539.
%Y A367683 The RHS is A367579, ranks A367580, sum A367581, max A367583.
%Y A367683 Partitions of this type are counted by A367682.
%Y A367683 A007947 gives squarefree kernel.
%Y A367683 A112798 lists prime indices, length A001222, sum A056239, reverse A296150.
%Y A367683 A181819 gives prime shadow, with an inverse A181821.
%Y A367683 A238747 gives prime metasignature, reversed A353742.
%Y A367683 A304038 lists distinct prime indices, length A001221, sum A066328.
%Y A367683 A367582 counts partitions by sum of multiset multiplicity kernel.
%Y A367683 Cf. A000720, A000961, A005117, A051904, A052409, A071625, A072774, A130091, A367584, A367586, A367587.
%K A367683 nonn
%O A367683 1,2
%A A367683 _Gus Wiseman_, Nov 30 2023