This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367683 #12 Dec 01 2023 15:57:03 %S A367683 1,2,6,9,10,12,14,18,22,26,30,34,38,40,42,46,58,62,66,70,74,78,82,86, %T A367683 90,94,102,106,110,112,114,118,122,125,126,130,134,138,142,146,154, %U A367683 158,166,170,174,178,182,186,190,194,198,202,206,210,214,218,222,225 %N A367683 Numbers whose sorted prime signature is the same as the multiset multiplicity kernel of their prime indices. %C A367683 We define the multiset multiplicity kernel (MMK) of a positive integer n to be the product of (least prime factor with exponent k)^(number of prime factors with exponent k) over all distinct exponents k appearing in the prime factorization of n. For example, 90 has prime factorization 2^1 * 3^2 * 5^1, so for k = 1 we have 2^2, and for k = 2 we have 3^1, so MMK(90) = 12. As an operation on multisets MMK is represented by A367579, and as an operation on their ranks it is represented by A367580. %H A367683 Michael De Vlieger, <a href="/A367683/b367683.txt">Table of n, a(n) for n = 1..10000</a> %H A367683 Michael De Vlieger, <a href="/A367683/a367683.png">20 X 20 color coded list of terms</a>, color function: gray = 1, red = prime, gold = composite prime power, green = squarefree composite, blue-purple = numbers neither squarefree nor prime powers. Bright green = primorial, light green = even squarefree semiprime, light blue = highly composite, middle blue = in A055932, purple = squareful but not a prime power. %H A367683 Michael De Vlieger, <a href="/A367683/a367683_1.png">485 X 485 = 235225-term raster</a> with the same color code as above. %e A367683 The terms together with their prime indices begin: %e A367683 1: {} %e A367683 2: {1} %e A367683 6: {1,2} %e A367683 9: {2,2} %e A367683 10: {1,3} %e A367683 12: {1,1,2} %e A367683 14: {1,4} %e A367683 18: {1,2,2} %e A367683 22: {1,5} %e A367683 26: {1,6} %e A367683 30: {1,2,3} %e A367683 34: {1,7} %e A367683 38: {1,8} %e A367683 40: {1,1,1,3} %e A367683 42: {1,2,4} %e A367683 46: {1,9} %e A367683 58: {1,10} %e A367683 62: {1,11} %e A367683 66: {1,2,5} %e A367683 70: {1,3,4} %t A367683 mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q,Count[q,#]==i&], {i,mts}]]]; %t A367683 Select[Range[100], #==1||Sort[Last/@FactorInteger[#]] == mmk[PrimePi/@Join@@ConstantArray@@@FactorInteger[#]]&] %Y A367683 Squarefree terms are A039956. %Y A367683 The LHS is A118914, unsorted A124010. %Y A367683 Prime-power terms are A307539. %Y A367683 The RHS is A367579, ranks A367580, sum A367581, max A367583. %Y A367683 Partitions of this type are counted by A367682. %Y A367683 A007947 gives squarefree kernel. %Y A367683 A112798 lists prime indices, length A001222, sum A056239, reverse A296150. %Y A367683 A181819 gives prime shadow, with an inverse A181821. %Y A367683 A238747 gives prime metasignature, reversed A353742. %Y A367683 A304038 lists distinct prime indices, length A001221, sum A066328. %Y A367683 A367582 counts partitions by sum of multiset multiplicity kernel. %Y A367683 Cf. A000720, A000961, A005117, A051904, A052409, A071625, A072774, A130091, A367584, A367586, A367587. %K A367683 nonn %O A367683 1,2 %A A367683 _Gus Wiseman_, Nov 30 2023