This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367684 #7 Dec 01 2023 09:31:29 %S A367684 1,1,2,2,4,5,8,10,14,17,25,30,39,51,66,79,102,125,154,191,233,284,347, %T A367684 420,499,614,726,867,1031,1233,1437,1726,2002,2375,2770,3271,3760, %U A367684 4455,5123,5994,6904,8064,9199,10753,12241,14202,16189,18704,21194,24504 %N A367684 Number of integer partitions of n whose multiset multiplicity kernel is a submultiset. %C A367684 We define the multiset multiplicity kernel MMK(m) of a multiset m by the following property, holding for all distinct multiplicities k >= 1. If S is the set of elements of multiplicity k in m, then min(S) has multiplicity |S| in MMK(m). For example, MMK({1,1,2,2,3,4,5}) = {1,1,3,3,3}, and MMK({1,2,3,4,5,5,5,5}) = {1,1,1,1,5}. As an operation on multisets MMK is represented by A367579, and as an operation on their ranks it is represented by A367580. %e A367684 The a(1) = 1 through a(7) = 10 partitions: %e A367684 (1) (2) (3) (4) (5) (6) (7) %e A367684 (11) (111) (22) (221) (33) (322) %e A367684 (211) (311) (222) (331) %e A367684 (1111) (2111) (411) (511) %e A367684 (11111) (2211) (2221) %e A367684 (3111) (4111) %e A367684 (21111) (22111) %e A367684 (111111) (31111) %e A367684 (211111) %e A367684 (1111111) %t A367684 submultQ[cap_,fat_]:=And@@Function[i, Count[fat,i]>=Count[cap, i]]/@Union[List@@cap]; %t A367684 mmk[q_List]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q,Count[q,#]==i&], {i,mts}]]]; %t A367684 Table[Length[Select[IntegerPartitions[n], submultQ[mmk[#],#]&]], {n,0,15}] %Y A367684 The case of strict partitions is A000012. %Y A367684 Includes all partitions with distinct multiplicities A098859, ranks A130091. %Y A367684 These partitions have ranks A367685. %Y A367684 A000041 counts integer partitions, strict A000009. %Y A367684 A072233 counts partitions by number of parts. %Y A367684 A091602 counts partitions by greatest multiplicity, least A243978. %Y A367684 A116608 counts partitions by number of distinct parts. %Y A367684 A116861 counts partitions by sum of distinct parts. %Y A367684 Cf. A000837, A032741, A071625, A109297, A114640, A367579, A367580, A367581. %K A367684 nonn %O A367684 0,3 %A A367684 _Gus Wiseman_, Nov 30 2023