This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367687 #16 Dec 01 2023 15:55:31 %S A367687 2,7,17,47,79,9479,41,5923,199,33461,2141,69173177,11579,7655281, %T A367687 20753,64869017,233231,2622816297743,341477,14508897313,8138947, %U A367687 24565981007,27445337,90698401133219401,313566167,2552728502809,229909997,23451738297083,948780491,20677177107714198558766009,3390080033 %N A367687 a(n) is the first prime p such that n*p+1 is the product of n primes counted with multiplicity. %H A367687 Robert Israel, <a href="/A367687/b367687.txt">Table of n, a(n) for n = 1..500</a> %F A367687 A001222(n*a(n)+1) = n. %e A367687 a(3) = 17 because 17 is prime and 3 * 17 + 1 = 52 = 2^2 * 13 is the product of 3 primes, and no smaller prime works. %p A367687 f:= proc(n) %p A367687 uses priqueue; %p A367687 local Q,t,q,i; %p A367687 initialize(Q); %p A367687 q:= 2; %p A367687 while n mod q = 0 do q:= nextprime(q) od: %p A367687 insert([-q^n,q,n],Q); %p A367687 do %p A367687 t:= extract(Q); %p A367687 if -t[1]-1 mod n = 0 and isprime((-t[1]-1)/n) then return (-t[1]-1)/n fi; %p A367687 q:= nextprime(t[2]); %p A367687 while n mod q = 0 do q:= nextprime(q) od; %p A367687 for i from 1 to t[3] do %p A367687 insert([t[1]*(q/t[2])^i,q,i],Q); %p A367687 od %p A367687 od; %p A367687 end proc: %p A367687 map(f, [$1..40]); %Y A367687 Cf. A001222, A072060. %K A367687 nonn,look %O A367687 1,1 %A A367687 _Zak Seidov_ and _Robert Israel_, Nov 26 2023