This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367698 #11 Nov 27 2023 09:48:10 %S A367698 1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,3,1,1,1,1,2,1,1, %T A367698 1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,2,1,1,1,1,1,1,1,4,1,1,1,1, %U A367698 1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 %N A367698 The smallest divisor d of n such that n/d is an exponentially odious number (A270428). %C A367698 First differs from A055229 at n = 64. %H A367698 Amiram Eldar, <a href="/A367698/b367698.txt">Table of n, a(n) for n = 1..10000</a> %F A367698 a(n) = n/A366905(n). %F A367698 Multiplicative with a(p^e) = p^(e-s(e)), where s(e) = max({k=1..e, k odious}). %F A367698 a(n) >= 1, with equality if and only if n is an exponentially odious number (A270428). %F A367698 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} f(1/p) = 1.25857819194624249136..., where f(x) = (1-x)*(1+Sum_{k>=1} x^s(k)), s(k) is defined above for k >= 1, and s(0) = 0. %t A367698 maxOdious[e_] := Module[{k = e}, While[EvenQ[DigitCount[k, 2, 1]], k--]; k]; f[p_, e_] := p^(e - maxOdious[e]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] %o A367698 (PARI) s(n) = {my(k = n); while(!(hammingweight(k)%2), k--); n-k; } %o A367698 a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^s(f[i, 2])); } %Y A367698 Cf. A055229, A270428, A366905, A367699. %K A367698 nonn,easy,mult,base %O A367698 1,8 %A A367698 _Amiram Eldar_, Nov 27 2023