cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367699 The smallest divisor d of n such that n/d is an exponentially evil number (A262675).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 1, 9, 10, 11, 12, 13, 14, 15, 2, 17, 18, 19, 20, 21, 22, 23, 3, 25, 26, 1, 28, 29, 30, 31, 1, 33, 34, 35, 36, 37, 38, 39, 5, 41, 42, 43, 44, 45, 46, 47, 6, 49, 50, 51, 52, 53, 2, 55, 7, 57, 58, 59, 60, 61, 62, 63, 1, 65, 66, 67, 68, 69, 70
Offset: 1

Views

Author

Amiram Eldar, Nov 27 2023

Keywords

Comments

First differs from A050985 at n = 32.

Crossrefs

Programs

  • Mathematica
    maxEvil[e_] := Module[{k = e}, While[OddQ[DigitCount[k, 2, 1]], k--]; k]; f[p_, e_] := p^(e - maxEvil[e]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(n) = {my(k = n); while(hammingweight(k)%2, k--); n-k; }
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^s(f[i, 2])); }

Formula

a(n) = n/A366906(n).
Multiplicative with a(p^e) = p^(e-s(e)), where s(e) = max({k=1..e, k evil}).
a(n) >= 1, with equality if and only if n is an exponentially evil number (A262675).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} f(1/p) = 0.84485885044273919581..., where f(x) = (1-x)*(1+Sum_{k>=1} x^(k+s(k))), s(k) is defined above for k >= 1, and s(0) = 0.