A367699 The smallest divisor d of n such that n/d is an exponentially evil number (A262675).
1, 2, 3, 4, 5, 6, 7, 1, 9, 10, 11, 12, 13, 14, 15, 2, 17, 18, 19, 20, 21, 22, 23, 3, 25, 26, 1, 28, 29, 30, 31, 1, 33, 34, 35, 36, 37, 38, 39, 5, 41, 42, 43, 44, 45, 46, 47, 6, 49, 50, 51, 52, 53, 2, 55, 7, 57, 58, 59, 60, 61, 62, 63, 1, 65, 66, 67, 68, 69, 70
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
maxEvil[e_] := Module[{k = e}, While[OddQ[DigitCount[k, 2, 1]], k--]; k]; f[p_, e_] := p^(e - maxEvil[e]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
s(n) = {my(k = n); while(hammingweight(k)%2, k--); n-k; } a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^s(f[i, 2])); }
Formula
a(n) = n/A366906(n).
Multiplicative with a(p^e) = p^(e-s(e)), where s(e) = max({k=1..e, k evil}).
a(n) >= 1, with equality if and only if n is an exponentially evil number (A262675).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} f(1/p) = 0.84485885044273919581..., where f(x) = (1-x)*(1+Sum_{k>=1} x^(k+s(k))), s(k) is defined above for k >= 1, and s(0) = 0.
Comments