This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367700 #34 Jun 18 2025 20:21:55 %S A367700 12,72,744,11256,201960,3871416,76138536,1512609912,30171384168, %T A367700 602782587960,12050495247528,240968665611768,4819043435788776, %U A367700 96378229818994104,1927543485550004520,38550700825394191224,771012665426135994984,15420242499878035355448,308404763528431125030312 %N A367700 Number of degree 2 vertices in the n-Menger sponge graph. %C A367700 The level 0 Menger sponge graph is a single vertex. The level n Menger sponge graph is formed from 20 copies of level n-1 in the shape of a cube with middle faces removed by joining boundary vertices between adjacent copies. %H A367700 Allan Bickle, <a href="https://allanbickle.files.wordpress.com/2016/05/mengerspongedegree.pdf">Degrees of Menger and Sierpinski Graphs</a>, Congr. Num. 227 (2016) 197-208. %H A367700 Allan Bickle, <a href="https://allanbickle.files.wordpress.com/2016/05/mengerspongeshort.pdf">MegaMenger Graphs</a>, The College Mathematics Journal, 49 1 (2018) 20-26. %H A367700 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MengerSpongeGraph.html">Menger Sponge Graph</a>. %H A367700 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (31,-244,480). %F A367700 a(n) = (1/17)*20^n + (2/5)*8^n + (216/85)*3^n. %F A367700 a(n) = 20*a(n-1) - (3/5)*8^n - (72/5)*3^n. %F A367700 a(n) = 20^n - A367701(n) - A367702(n) - A367706(n) - A367707(n). %F A367700 2*a(n) = 2*A291066(n) - 3*A367701(n) - 4*A365602(n) - 5*A367706(n) - 6*A367707(n). %F A367700 G.f.: 12*x*(1 - 25*x + 120*x^2)/((1 - 3*x)*(1 - 8*x)*(1 - 20*x)). - _Stefano Spezia_, Nov 27 2023 %e A367700 The level 1 Menger sponge graph is a cube with each edge subdivided, which has 12 degree 2 vertices and 8 degree 3 vertices. Thus a(1) = 12. %t A367700 LinearRecurrence[{31,-244,480}, {12, 72, 744}, 25] (* _Paolo Xausa_, Nov 28 2023 *) %o A367700 (Python) %o A367700 def A367700(n): return (5*20**n+(34<<3*n)+216*3**n)//85 # _Chai Wah Wu_, Nov 27 2023 %Y A367700 Cf. A009964 (number of vertices), A291066 (number of edges). %Y A367700 Cf. A359452, A359453 (numbers of corner and non-corner vertices). %Y A367700 Cf. A083233, A332705 (surface area). %Y A367700 Cf. A367701, A367702, A367706, A367707 (degrees 2 through 6). %Y A367700 Cf. A001018, A271939, A365602, A365606, A365607, A365608 (Sierpinski carpet graphs). %K A367700 nonn,easy %O A367700 1,1 %A A367700 _Allan Bickle_, Nov 27 2023