A367708 Numbers k that are neither squarefree nor prime powers such that max(A119288(k), A053669(k)) <= A003557(k) < A007947(k).
50, 75, 80, 98, 112, 135, 147, 189, 240, 242, 245, 252, 270, 294, 300, 336, 338, 350, 352, 360, 363, 378, 396, 416, 450, 468, 480, 490, 504, 507, 525, 528, 540, 550, 560, 578, 588, 594, 600, 605, 612, 624, 650, 672, 684, 700, 702, 720, 722, 726, 735, 750, 756
Offset: 1
Keywords
Examples
Let q = A053669(k) and let p = A119288(k). For s = 10, we have {50, 80}, since s * { max(p, q) <= m < s : rad(m) | s } = 10*{ max(5, 3) <= m < 10 : rad(m) | 10 } = 10*{5, 8} = {50, 80}. For s = 15, we have {45, 135}, since s * { max(p, q) <= m < s : rad(m) | s } = 15*{ max(5, 2) <= m < 15 : rad(m) | 15 } = 15*{5, 9} = {240, 270, 300, 360, 450, 480, 540, 600, 720, 750, 810}. For s = 30, we have {45, 135}, since s * { max(p, q) <= m < s : rad(m) | s } = 30*{ max(3, 7) <= m < 30 : rad(m) | 30 } = 30*{8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27} = {240, 270, 300, 360, 450, 480, 540, 600, 720, 750, 810}.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
nn = 756; Select[Select[Range[12, nn], Nor[SquareFreeQ[#], PrimePowerQ[#]] &], And[Max[#2, #3] <= #1 < #4, ! AllTrue[#5, # > 1 &]] & @@ {#1/#4, #2, #3, #4, #5} & @@ {#1, #2[[2, 1]], #3, Times @@ #2[[All, 1]], #2[[All, -1]]} & @@ {#, FactorInteger[#], If[OddQ[#], 2, q = 3; While[Divisible[#, q], q = NextPrime[q]]; q]} &]
Comments