cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367731 Decimal expansion of Sum_{k>=1} 1 / (k^2 * k!).

This page as a plain text file.
%I A367731 #13 Feb 12 2024 15:05:33
%S A367731 1,1,4,6,4,9,9,0,7,2,5,2,8,6,4,2,8,0,7,9,0,1,1,9,5,2,0,2,4,6,4,7,1,8,
%T A367731 6,8,8,6,1,9,2,9,1,7,7,3,3,8,8,1,0,9,4,7,0,4,3,0,3,5,3,2,6,5,1,0,9,0,
%U A367731 1,5,8,4,3,6,9,6,4,7,7,1,4,2,0,8,8,7,3,6,4,6,8,6,6,7,1,0,0,1,6,4
%N A367731 Decimal expansion of Sum_{k>=1} 1 / (k^2 * k!).
%F A367731 From _Peter Bala_, Feb 10 2024: (Start)
%F A367731 Equals (1/2)*Integral_{x = 0..1} exp(x)*log(x)^2 dx.
%F A367731 Equals the triple integral Integral_{z = 0..1} Integral_{y = 0..1} Integral_{x = 0..1} exp(x*y*z) dx dy dz. (End)
%e A367731 1.1464990725286428079011952024647...
%t A367731 RealDigits[HypergeometricPFQ[{1, 1, 1}, {2, 2, 2}, 1], 10, 100][[1]]
%o A367731 (PARI) intnum(x=0,1,exp(x)*log(x)^2)/2 \\ _Hugo Pfoertner_, Feb 12 2024
%Y A367731 Cf. A002775, A076788, A229837, A367732.
%K A367731 nonn,cons
%O A367731 1,3
%A A367731 _Ilya Gutkovskiy_, Nov 28 2023