This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A367736 #28 Feb 05 2024 20:21:06 %S A367736 1,1,2,4,6,11,19,32,58,97,163,290,501,856,1483,2561,4424,7652,13273, %T A367736 23024,39784,69001,119614,207042,358746,621117,1075865,1864050, %U A367736 3227724,5590548,9682402,16770033,29049713,50310453,87142439,150939346,261424583,452810957 %N A367736 a(0) = 1; for n > 0, a(n) is the coefficient of x^a(n-1) in the expansion of Product_{k=0..n-1} (x^a(k) + 1 + 1/x^a(k)). %t A367736 a[0] = 1; a[n_] := a[n] = Coefficient[Product[x^a[k] + 1 + 1/x^a[k], {k, 0, n - 1}], x, a[n - 1]]; Table[a[n], {n, 0, 28}] %o A367736 (Python) %o A367736 from itertools import islice %o A367736 from collections import Counter %o A367736 def A367736_gen(): # generator of terms %o A367736 c, b = {0:1}, 1 %o A367736 while True: %o A367736 yield b %o A367736 d = Counter(c) %o A367736 for k in c: %o A367736 e = c[k] %o A367736 d[k+b] += e %o A367736 d[k-b] += e %o A367736 c = d %o A367736 b = c[b] %o A367736 A367736_list = list(islice(A367736_gen(),20)) # _Chai Wah Wu_, Feb 05 2024 %Y A367736 Cf. A063890, A265853, A316706. %K A367736 nonn,more %O A367736 0,3 %A A367736 _Ilya Gutkovskiy_, Jan 24 2024 %E A367736 a(29)-a(37) from _Chai Wah Wu_, Feb 05 2024