cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367757 E.g.f. satisfies A(x) = exp(x * (1 + x + x^2 + x^3 + x^4) * A(x^5/120)).

This page as a plain text file.
%I A367757 #6 Nov 29 2023 11:47:52
%S A367757 1,1,3,13,73,501,3337,27637,254409,2557369,27603631,313768731,
%T A367757 3905502745,51573777841,718307494269,10507900625251,161239887204721,
%U A367757 2608009648536417,43989477103304155,772109936171046001,14085074476090366761,266890182641557777093
%N A367757 E.g.f. satisfies A(x) = exp(x * (1 + x + x^2 + x^3 + x^4) * A(x^5/120)).
%F A367757 a(0) = 1; a(n) = (n-1)! * Sum_{k=0..n-1} (k+1) * a(floor(k/5)) * a(n-1-k) / (120^floor(k/5) * floor(k/5)! * (n-1-k)!).
%o A367757 (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=0, i-1, (j+1)*v[j\5+1]*v[i-j]/(120^(j\5)*(j\5)!*(i-1-j)!))); v;
%Y A367757 Cf. A367754, A367755, A367756.
%Y A367757 Cf. A143569.
%K A367757 nonn
%O A367757 0,3
%A A367757 _Seiichi Manyama_, Nov 29 2023