cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367766 Numerator of the greatest probability that a particular fixed polyomino with n cells appears in the Eden growth model (see A367760).

This page as a plain text file.
%I A367766 #9 Dec 03 2023 09:12:25
%S A367766 1,1,1,1,1,53,49541,813359,59243701,18007129909,26754412658849,
%T A367766 922373240806979,42709276740325681463,5698447182281913432980459
%N A367766 Numerator of the greatest probability that a particular fixed polyomino with n cells appears in the Eden growth model (see A367760).
%C A367766 a(n) is the numerator of the maximum of A367764/A367765 over the n-th row.
%H A367766 <a href="/index/Pol#polyominoes">Index entries for sequences related to polyominoes</a>.
%e A367766 For 1 <= n <= 14, the following are all polyominoes, up to reflections and rotations, that have the maximum probabilities for their respective sizes. Except for n = 3, there is just one such polyomino (again, up to reflections and rotations).
%e A367766                     _           _      _ _
%e A367766         _    _     | |   _ _   | |_   |   |
%e A367766    _   | |  | |_   | |  |   |  |   |  |   |
%e A367766   |_|  |_|  |_ _|  |_|  |_ _|  |_ _|  |_ _|
%e A367766                                 _
%e A367766    _ _      _ _      _ _ _    _| |_
%e A367766   |   |_   |   |_   |     |  |     |
%e A367766   |    _|  |     |  |     |  |     |
%e A367766   |_ _|    |_ _ _|  |_ _ _|  |_ _ _|
%e A367766    _ _      _ _ _      _ _      _ _ _
%e A367766   |   |_   |     |   _|   |_   |     |_
%e A367766   |     |  |     |  |       |  |       |
%e A367766   |     |  |     |  |      _|  |      _|
%e A367766   |_ _ _|  |_ _ _|  |_ _ _|    |_ _ _|
%Y A367766 Cf. A367677, A367760, A367762, A367764, A367765, A367767 (denominators).
%K A367766 nonn,frac,more
%O A367766 1,6
%A A367766 _Pontus von Brömssen_, Dec 02 2023